Share to: share facebook share twitter share wa share telegram print page

 

E=mc²

Dispaket eo bet ar gevatalenn fizik teorikel E = mc2 evit ar wech kentañ gant Albert Einstein en e bennad eus 1905 "Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?" ("Hag emañ Inertiezh ur C'horf diouzh an Energiezh Endalc'het ennañ?", embannet en Annalen der Physik d'ar 27 a viz Gwengolo), unan eus ar pennadoù anavezet bremañ evel Pennadoù an Annus Mirabilis. Ennañ e anata Einstein ul liamm etre an energiezh (E) hag an tolz (m).

E bed teorienn ar relativelezh strishaet ez empleg eo, en ur mod, kevatal an energiezh hag an tolz. War an dachenn bleustrek eo disoc'het war savidigezh ar vombezenn atomek. Unan eus brudetañ kevatalennoù bet savet biskoazh ez eo. Memes an dud na ouzont ket resis petra a dalvez o deus un tamm soñj bennak, dre o sevenadur, eus he zalvoudegezh.

Albert Einstein
Albert Einstein

Istor hag heuliadoù

Deuet eo ar gevatalenn diwar imbourc'hioù Albert Einstein war amzalc'h an tolz e-keñver an energiezh endalc'het ennañ. Disoc'h brudet an imbourc'h-se eo ez eo tolz ur c'horf ur muzul eus an energiezh endalc'het ennañ. Evit kompren talvoudegezh an darempred-se e c'haller keñveriañ an nerzh tredanvagnetek gant an nerzh dedennañ. En dredanvagnetegezh eo endalc'het an energiezh er maeziennoù (tredan ha magnetek) koublet gant an nerzh ha neket er c'hargoù. En nerzh dedennañ eo endalc'het an energiezh er materi e-unan. N'eo ket dre zegouezh ma vez krommet an egoramzer gant an tolz, tra ma ne vez ket graet gant kargoù an tri nerzh diazez all.

Diouzh ar gevatalenn eo par sammad uhelañ an energiezh a c'haller tennañ eus ur c'horf da tolz ar c'horf lieskementet dre karrez tizh al luc'h.

Hollbouezus eo bet ar gevatalenn-mañ a-benn diorren an vombezenn atomek. Pa vez muzuliet tolz derc'hanoù nukleel disheñvel ha pa vez keñveriet an niver kavet gant tolz ar protonennoù ha neutronennoù, e c'haller brasjediñ an energiezh distrollañ endalc'het e diabarzh an derc'han nukleel. Diskouez a ra ez eus tu da broduiñ energiezh dre uniaduriñ derc'hanoù skañv ha dre skiriañ derc'hanoù pounner; anataat a ra ivez e c'haller istimañ ar c'hementad a energiezh a c'hall en em zispakañ diwar-se.

N'eo ket anavezet nemeur eo bet skrivet ar gevatalenn gant Einstein da gentañ er stumm m = L/c² (gant un "L", e-lec'h un "E", evit an enegiezh).

Ur c'hilogramm tolz a glot gant

Pouezus eo notenniñ eo ral-kenañ e vije 100% efedus an amdroadurioù tolz en energiezh. Gallout a raje un amdroadur pleustrek peurvat dont eus ur c'henstok materi gant enepmateri; peurliesañ koulskoude e vez ganet adproduioù e-lec'h energiezh, ha ne amdro ket an tolz nemeur. Er gevatalenn, tolz zo energiezh, met evit bezañ sklaer ez eus bet graet gant ar ger amdreiñ e plas.

Hervez Umberto Bartocci (Skol-veur Perugia, istorour ar jedoniezh), e oa bet embannet ar gevatalenn evit ar wech kentañ daou vloaz a-raok gant Olinto De Pretto, un embregour eus Vicenza, Italia; ne gav ket d'an darn vrasañ eus an istorourien eo gwir pe pouezus kement-se avat. Ha pa vije bet ijinet ar formulenn gant De Pretto ez eo gant Einstein eo bet graet al liamm gant teorienn ar relativelezh.

Ar gevatalenn e pleustr

Pa'z eo gwir ez eo an tolz energiezh e sell ar gevatalenn ouzh an holl draezoù dezho un tolz. An implij anezhañ a-benn lakaat traezoù da fiñval zo diouzh termenadur an tolz implijet er gevatalenn.

Implijout un tolz relativel

En e bennadoù kentañ (gwelet [1]) e rae Einstein gant m evit ar pezh a vefe graet tolz relativel anezhañ an deiz a hiziv. Liammet eo ouzh an tolz war ziskuizh m0 (dle. tolz an draezenn er framm dave m'emañ difiñv) evel-henn:

En ur implijout an tolz relativel e sell ar gevatalenn ouzh traezoù a fiñv da ne vern pe dizh.

Implijout an tolz war ziskuizh

Ne ra ket nemeur ar fizikourien a-hiziv gant an tolz relativel a implij m evit merkañ an tolz war ziskuizh en doare m'eo E = mc² evit energiezh war ziskuizh (dle. energiezh an traezoù pa vezont war ziskuizh) un dra bennak. En degouezh-mañ ne sell ar gevatalenn nemet ouzh an traezoù difiñv; stumm a-vremañ ar gevatalenn evit un draezenn enni un tamm tizh bennak zo

,

El lec'h m'emañ evit momed relativel an draezenn. Krennet e vez da E = mc² evit an degouezh pa ne vez tamm tizh ebet. En enep d'an implij a-vremañ, hag evit ma chomo sklaer ar pennad-mañ, eo bet implijet amañ m evit an tolz relativel hag m0 evit an tolz war ziskuizh.

Tostaat d'an energiezh dister

Dre m'eo par an energiezh war ziskuizh da m0c², hag an energiezh hollek zo an energiezh kinetek mui an energiezh war ziskuizh, e kaver an energiezh relativel gant

ha d'un tizh dister e tlefe klotañ gant formulenn glasel an energiezh kinetek,

.

Diskouez a c'haller an daou anezho dre astenn en ur implijout un heuliadoù Taylor,

.

o lakaat se en-dro e-barzh hor c'hevatalenn gentañ,

,

a-du gant formulenn glasel Newton evit an energiezh kinetek. Kement-se a ziskouez ez eo ar relativelezh un urzh reizhder uheloc'h d'ar mekanikerezh klasel hag ez eo kenkoulz ar mekanikerezh relativel ha newtonel en ur renad klasel pe dister e dizh. En ur gas pelloc'h ar mekanikerezh klasel war dachenn ar founnus-tre hag ar bras-divent eo bet diskouezet gant Einstein e oa kamm ar mekanikerezh klasel. E degouezh an traezoù bihanoc'h ha gorrekoc'h, diouzh ar re bet implijet evit diazezañ ar mekanikerezh klasel, ez eo ar mekanikerezh klasel un adstal d'ar mekanikerezh relativel. Ne gaver eneberezh etre an div deorienn nemet er-maez eus ar renad klasel.

Abadennoù skinwel

Bet eo E=mc² titl un abadenn skinwel e 2005 diwar-benn buhez Einstein ha, peurgetket, ar bloavezh 1905, skignet e breizh-Veur.

Gwelet ivez

Daveennoù

  • Bodanis, David; E=mc2: A Biography of the World's Most Famous Equation; Emb. Berkley Trade; 2001; ISBN 0-425-18164-2
  • Tipler, Paul; Llewellyn, Ralph; Modern Physics (4e emb.); W. H. Freeman; 2002; ISBN 0-7167-4345-0

Liammoù diavaez (e saozneg)

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9