Share to: share facebook share twitter share wa share telegram print page

 

Optika

Tabel Opticks, 1728 Cyclopaedia

Optika (serapan dari bahasa Belanda: optica) adalah cabang fisika yang menggambarkan perilaku dan sifat cahaya dan interaksi cahaya dengan materi. Optika menerangkan dan diwarnai oleh gejala optis. Kata optik berasal dari bahasa Latin ὀπτική, yang berarti tampilan.

Kajian dalam optika umumnya menggambarkan sifat cahaya tampak, inframerah dan ultraviolet; tetapi karena cahaya adalah gelombang elektromagnetik, gejala yang sama juga terjadi di sinar-X, gelombang mikro, gelombang radio, dan bentuk lain dari radiasi elektromagnetik dan juga gejala serupa seperti pada sorotan partikel bermuatan (charged beam). Optika secara umum dapat dianggap sebagai bagian dari keelektromagnetan. Beberapa gejala optis bergantung pada sifat kuantum cahaya yang terkait dengan beberapa bidang optika hingga mekanika kuantum. Dalam praktiknya, kebanyakan dari gejala optis dapat dihitung dengan menggunakan sifat elektromagnetik dari cahaya, seperti yang dijelaskan oleh persamaan Maxwell.

Bidang optika memiliki identitas, masyarakat, dan konferensinya sendiri. Aspek keilmuannya sering disebut juga fisika optik. Ilmu optik terapan sering disebut rekayasa optik. Aplikasi dari rekayasa optik yang terkait khusus dengan sistem iluminasi (iluminasi) disebut rekayasa pencahayaan.

Setiap disiplin cenderung sedikit berbeda dalam aplikasi, keterampilan teknis, fokus, dan afiliasi profesionalnya. Inovasi lebih baru dalam rekayasa optik sering dikategorikan sebagai fotonika atau optoelektronika. Batas-batas antara bidang ini dan "optik" sering tidak jelas, dan istilah yang digunakan berbeda di berbagai belahan dunia dan dalam berbagai bidang industri.

Karena aplikasi yang luas dari optika di dunia nyata, bidang ilmu optika dan rekayasa optik berkembang menjadi lintas disiplin. Ilmu optika merupakan bagian dari berbagai disiplin terkait, seperti elektrofisika, psikologi, dan kedokteran (khususnya oftalmologi dan optometri). Selain itu, penjelasan yang paling lengkap tentang perilaku optis, seperti dijelaskan dalam fisika, tidak selalu rumit untuk kebanyakan masalah, jadi model sederhana dapat digunakan. Model sederhana ini cukup untuk menjelaskan sebagian gejala optis serta mengabaikan perilaku yang tidak relevan dan / atau tidak terdeteksi pada suatu sistem.

Di ruang bebas suatu gelombang berjalan pada kecepatan c = 3×108 meter/detik. Ketika memasuki medium tertentu (dielectric atau nonconducting) gelombang berjalan dengan suatu kecepatan v, yang mana adalah karakteristik dari bahan dan kurang dari besarnya kecepatan cahaya itu sendiri (c). Perbandingan kecepatan cahaya di dalam ruang hampa dengan kecepatan cahaya di medium adalah indeks bias n bahan sebagai berikut: n = c⁄v

Optika klasik

Sebelum optika kuantum menjadi penting, asarnya terdiri dari aplikasi elektromagnetik klasik dan pendekatan frekuensi tinggi untuk cahaya. Optik klasik terbagi menjadi dua cabang utama: optika geometris dan optika fisis.

Optika Geometris

Optika geometris, atau optika sinar, menjelaskan propagasi cahaya dalam bentuk "sinar". Sinar dibelokkan di antarmuka antara dua medium yang berbeda, dan dapat berbentuk kurva di dalam medium yang mana indeks-refraksinya merupakan fungsi dari posisi. "Sinar" dalam optik geometris merupakan objek abstrak, atau "instrumen", yang sejajar dengan muka gelombang dari gelombang optis sebenarnya. Optik geometris menyediakan aturan untuk penyebaran sinar ini melalui sistem optis, yang menunjukkan bagaimana sebenarnya muka gelombang akan menyebar. Ini adalah penyederhanaan optik yang signifikan, dan gagal untuk memperhitungkan banyak efek optis penting seperti difraksi dan polarisasi. Namun hal ini merupakan pendekatan yang baik, jika panjang gelombang cahaya tersebut sangat kecil dibandingkan dengan ukuran struktur yang berinteraksi dengannya. Optik geometris dapat digunakan untuk menjelaskan aspek geometris dari penggambaran cahaya (imaging), termasuk aberasi optis.

Optika geometris sering disederhanakan lebih lanjut oleh pendekatan paraksial, atau "pendekatan sudut kecil." Perilaku matematika yang kemudian menjadi linear, memungkinkan komponen dan sistem optis dijelaskan dalam bentuk matrik sederhana. Ini mengarah kepada teknik optik Gauss dan penelusuran sinar paraksial, yang digunakan untuk order pertama dari sistem optis, misalnya memperkirakan posisi dan magnifikasi dari gambar dan objek. Propagasi sorotan Gauss merupakan perluasan dari optik paraksial yang menyediakan model lebih akurat dari radiasi koheren seperti sorotan laser. Walaupun masih menggunakan pendekatan paraksial, teknik ini memperhitungkan difraksi, dan memungkinkan perhitungan pembesaran sinar laser yang sebanding dengan jarak, serta ukuran minimum sorotan yang dapat terfokus. Propagasi sorotan Gauss menjembatani kesenjangan antara optik geometris dan fisik.

Optika Fisis

Optika fisis atau optika gelombang membentuk prinsip Huygens dan memodelkan propagasi dari muka gelombang kompleks melalui sistem optis, termasuk amplitudo dan fase dari gelombang. Teknik ini, yang biasanya diterapkan secara numerik pada komputer, dapat menghitung efek difraksi, interferensi, polarisasi, serta efek kompleks lain. Akan tetapi pada umumnya aproksimasi masih digunakan, sehingga tidak secara lengkap memodelkan teori gelombang elektromagnetik dari propagasi cahaya. Model lengkap tersebut jauh lebih menuntut komputasi, akan tetapi dapat digunakan untuk memecahkan permasalahan kecil yang memerlukan pemecahan lebih akurat.

Topik yang berkaitan dengan optik klasik

Optika modern

Optika modern meliputi bidang ilmu dan rekayasa optik yang menjadi terkenal pada abad ke 20. Bidang-bidang ilmu optik ini biasanya berhubungan dengan elektromagnetik atau sifat kuantum dari cahaya tetapi tidak termasuk topik lain.

Topik yang berkaitan dengan optik modern

Optik sehari-hari

Optik adalah bagian dari kehidupan sehari-hari. Pelangi dan bayangan adalah contoh gejala optis. Banyak orang mendapat manfaat dari kacamata atau lensa kontak, dan optik digunakan di banyak barang konsumen termasuk kamera. Superimposisi dari struktur periodik, misalnya tisu transparan dengan struktur kisi, menghasilkan bentuk yang dikenal sebagai pola moiré. Superimposisi dari pola periodik transparan yang terdiri garis atau kurva buram paralel memproduksi pola garis moiré.

Bidang optik lain

Lihat pula

Masyarakat

Referensi

Pranala luar

Buku teks dan tutorial

Masyarakat

Publikasi

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9