Share to: share facebook share twitter share wa share telegram print page

 

单射

數學裡,單射函數(或稱內射函數、嵌射函數[1]、一對一函數,英文稱injection、injective function 或 one-to-one function)為一函數,其將不同的輸入值對應到不同的函數值上。更精確地說,函數f被稱為是單射的,當對每一陪域內的y,存在最多一個定義域內的x使得f(x) = y

由從X 映射至Y 的單射函數所組成的集合標記為YX,該符號的由來為下降階乘冪。當XY 分別為具有m 個及n 個元素的有限集合時,從X 映射至Y 的單射函數數量可以以下降階乘冪表示為nm

定義

f 為一函數,且其定義域為一集合X,若且唯若對所有於X 內的元素ab,當f(a) = f(b)時,a = b,則該函數為單射函數;等價地說,當ab時,f(a) ≠ f(b)

以邏輯符號表示如下:

換質換位律,該敘述邏輯等價於

例子與反例

  • 對任一集合XX上的恆等函數為單射的。
  • 函數f : R → R,其定義為f(x) = 2x + 1,是單射的。
  • 函數g : R → R,其定義為g(x) = x2,不是單射的,因為g(1) = 1 = g(−1)。但若將g的定義域限在非負實數[0,+∞)內,則g是單射的。
  • 指數函數是單射的。
  • 自然對數函數是單射的。
  • 函數,不是單射的,因為 g(0) = g(1)。

形象化地說,當定義域和到達域都是實數集 R時,單射函數f : R → R為一絕不會與任一水平線相交超過一點的圖。

單射函數為可逆函數

具有左反函數的函數,必為單射。此處的條件(具有左反函數),比具有反函數弱:給定一函數f : XY,若存在一函數g : YX,使得對X內的每個元素x

g(f(x)) = x

則稱gf左反函數,而上式也就推出f為單射函數。

相反地,每個具非空定義域的單射函數f 都會有個左反函數g[2]。須注意的是,g 不一定會是f反函數,因為相反順序的函數複合fg 不一定也會是Y 上的恆等函數

事實上,要將一單射函數f : X → Y變成雙射函數,只需要將其陪域Y替換成其值域J = f(X)就行了。亦即,令g : X → J,使其對所有X內的xg(x) = f(x);如此g便為滿射的了。確實,f可以分解成inclJ,Yog,其中inclJ,Y是由JY內含映射

其他性質

  • fg皆為單射的,則f o g亦為單射的。
單射複合
  • g o f為單射的,則f為單射的(但g不必然要是)。
  • f : X → Y是單射的若且唯若當給定兩函數g, h : W → X會使得f o g = f o h時,則g = h
  • f : X → Y為單射的且AX子集,則f −1(f(A)) = A
  • f : X → Y是單射的且AB皆為X的子集,則f(A ∩ B) = f(A) ∩ f(B)。
  • 任一函數 h : W → Y 皆可分解為 h = f o g 其中 f 是單射而 g 是滿射。此分解至多差一個自然同構, f 可以設想為從 h(W) 到 Y內含映射
  • f : X → Y 是單射,則在基數的意義下 Y 的元素數量不少於 X
  • XY 皆為有限集,則 f : X → Y 是單射若且唯若它是滿射。
  • 內含映射總是單射。

範疇論的觀點

範疇論的語言來說,單射函數恰好是集合範疇內的單態射

另見

參考資料

  1. ^ injection - 嵌射;單射页面存档备份,存于互联网档案馆),國家教育研究院雙語詞彙、學術名詞暨辭書資訊網
  2. ^ Injection iff Left Inverse [單射當且僅當有左逆]. proofwiki.org. [2021-09-01]. (原始内容存档于2022-03-10) (英语). 

參考文獻

外部連結

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9