Share to: share facebook share twitter share wa share telegram print page

 

共轭复数

复平面上和它的共轭复数的表示。

數學中,複數共軛複數(常簡稱共軛)是對虛部變號的運算

正式定義

复数)的共軛定義為:

有時也表為:

如:

(實數的共軛為自身)
(純虛數的共軛)

將複數理解為複平面的一點的話,則几何上,複共軛是此點以實數軸為對稱軸反射

性質

對於複數

一般而言,如果複平面上的函數能表為實係數冪級數,則有:

最直接的例子是多項式,由此可推得實係數多項式之複根必共軛。此外也可用於複指數函數與複對數函數(取定一分支):

透過欧拉公式,在極坐標表法下,複數共軛可以寫成

其它觀點'

複共軛是複平面上的自同構,但是並非全純函數

記複共軛為,則有。在代數數論中,慣於將複共軛設想為「無窮素數」的弗羅貝尼烏斯映射,有時記為

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9