Vanadyum akış pili (VFB) veya vanadyum redoks akışlı pil (VRFB) olarak da bilinen bir tür şarj edilebilir akışlı pildir. Yük taşıyıcı olarak vanadyum iyonlarını kullanır.[2] Pil, tek bir elektroaktif element içeren bir pil yapmak için vanadyumun dört farklı oksidasyon durumunda bir çözelti içinde var olma yeteneğini kullanır.[3] Göreceli büyüklükleri de dahil olmak üzere çeşitli nedenlerle, vanadyum piller tipik olarak şebeke enerji depolaması için kullanılır, yani enerji santrallerine/elektrik şebekelerine takılır.[4]
Pillerin finansman ve geliştirilmesinde çok sayıda şirket ve kuruluş yer almaktadır.
Tarih
Pissoort, 1930'larda VRFB'lerin olasılığından bahsetmişti.[5] NASA araştırmacıları ile Pellegri ve Spaziante 1970'lerde aynı şeyi yaptı,[6] ama hiçbiri başarılı olamadı. Maria Skyllas-Kazacos, 1980'lerde bir sülfürik asit çözeltisi içinde çözünmüş vanadyum kullanan bir Tam Vanadyum Redoks Akış Pilinin ilk başarılı tanıtımını sundu.[7][8][9] Tasarımı sülfürik asit elektrolitleri kullandı ve Avustralya'daki New South Wales Üniversitesi tarafından patentlendi.
Skyllas-Kazacos ve çalışma arkadaşları tarafından elde edilen önemli atılımlardan biri, başlangıç malzemesi olarak daha düşük maliyetli, ancak çözünmeyen vanadyum pentoksit kullanılarak 1,5 M'nin üzerinde konsantrasyona sahip vanadyum elektrolitleri üretmek için bir dizi işlemin geliştirilmesiydi. Bu işlemler kimyasal ve elektrokimyasal çözünmeyi içeriyordu ve 1989'da NSW Üniversitesi tarafından patentlendi. 1990'larda UNSW grubu, membran seçimi, grafit keçe aktivasyonu, plastik çift kutuplu elektrot üretimi, elektrolit karakterizasyonu ve optimizasyonunun yanı sıra modelleme ve simülasyon konularında kapsamlı araştırmalar yürüttü. Birkaç 1-5 kW VFB prototip pil Tayland'daki bir Solar House'da ve UNSW'de bir elektrikli golf arabasında monte edilerek sahada test edildi.
UNSW All-Vanadium Redox Flow Battery patentleri ve teknolojisi, 1990'ların ortalarında Mitsubishi Chemical Corporation ve Kashima-Kita Electric Power Corporation'a lisanslandı ve ardından 1990'ların sonuyla 2000'lerin başlarında çok çeşitli uygulamalarda kapsamlı saha testlerinin yapıldığı Sumitomo Electric Industries tarafından satın alındı.
Bataryanın çalışma sıcaklık aralığını genişletmek ve vanadyumun V(V) durumunda 40oC'nin üzeri veya 10oC'nin altındaki sıcaklıklarda çökelmesini önlemek için Skyllas-Kazacos ve çalışma arkadaşları potansiyel çökelme inhibitörleri olarak yüzlerce organik ve inorganik katkı maddesini test ettiler. İnorganik fosfat ve amonyum bileşiklerinin sırasıyla 5 ve 45oC sıcaklıklarda hem negatif hem de pozitif yarı hücrede 2 M vanadyum çözeltilerinin çökelmesini önlemede etkili olduğunu keşfettiler ve en etkili stabilize edici ajan olarak amonyum fosfatı seçtiler. Amonyum ve fosfat katkı maddeleri, mükemmel sonuçlarla bir akış hücresinde 3 M vanadyum elektrolit hazırlamak ve test etmek için kullanıldı.
Avantajlar ve dezavantajlar
Avantajlar
VRFB'lerin diğer pil türlerine göre başlıca avantajları:[11]
enerji kapasitesinde sınır yok
hasar görmeden süresiz olarak boşalabilir
elektrolitlerin karıştırılması kalıcı hasara neden olmaz
elektrolitler boyunca tek şarj durumu, kapasite bozulmasını önler
güvenli, yanıcı olmayan sulu elektrolit
gürültü veya emisyon yok
talebi karşılamak için pil modülleri eklenebilir
pasif soğutma dahil geniş çalışma sıcaklığı aralığı[12][13]
uzun şarj/deşarj döngüsü ömürleri: 15.000-20.000 döngü ve 10-20 yıl.
düşük seviyelendirilmiş maliyet : (birkaç on sent), ABD Enerji Bakanlığı tarafından belirtilen 2016 0,05 $ hedefine ve Avrupa Komisyonu Stratejik Enerji Teknoloji Planı 0,05 € hedefine yaklaşıyor.[14]
Dezavantajları
Diğer pil türlerine kıyasla VRFB'lerin ana dezavantajları:[11]
vanadyum minerallerinin yüksek ve değişken fiyatları (yani VRFB enerjisinin maliyeti)
elektrolit çözeltisinin akışını üreten pompalarda hareketli parçalara sahip olmak
vanadyum (V) bileşiklerinin toksisitesi.
Malzemeler
Vanadyum redoks pili, iki elektrolitin bir proton değişim zarı ile ayrıldığı güç hücreleri grubundan oluşur. VRB hücresindeki elektrotlar karbon bazlıdır. En yaygın türleri karbon keçe, karbon kağıdı, karbon bezi, grafit keçe ve karbon nanotüplerdir.[15][16][17]
Her iki elektrolit de vanadyum bazlıdır. Pozitif yarı hücrelerdeki elektrolit VO2+ ve VO2+ iyonlarını içerirken, negatif yarı hücrelerdeki elektrolit V3+ve V2+ iyonlarından oluşur. Elektrolitler, vanadyum pentoksitinsülfürik asit içinde elektrolitik olarak çözülmesi dahil olmak üzere çeşitli işlemlerle hazırlanabilir. Çözelti kullanımda oldukça asidiktir.
En yaygın membran malzemesi perflorlu sülfonik asittir (PFSA veya Nafion). Bununla birlikte, vanadyum iyonları bir PFSA zarına nüfuz edebilir ve hücrenin dengesini bozabilir. 2021'de yapılan bir araştırma, tek katmanlı grafen oksit levhaların yüzeyinde tungsten trioksit nanoparçacıklarının büyütülmesiyle yapılan hibrit levhalarla penetrasyonun azaldığını buldu. Bu hibrit levhalar daha sonra politetrafloroetilen (Teflon) ile güçlendirilmiş sandviç yapılı bir PFSA membranına gömülür. Nanopartiküller aynı zamanda sırasıyla yüzde 98,1 ve yüzde 88,9'un üzerinde yüksek Coulombic verimliliği ve enerji verimliliği sunarak proton taşınmasını da teşvik ediyor.[18]
Vanadyum akış pillerinin yararlı özellikleri, hızlı yanıt ve kapasiteleridir; %100 yük değişikliği için yarım milisaniyenin altında bir tepki süresiyle 10 saniye boyunca %400'e varan aşırı yüklere izin verebilirler. Tepki süresi çoğunlukla elektrikli ekipmanla sınırlıdır. Daha soğuk veya daha sıcak iklimler için özel olarak tasarlanmadıkça, çoğu sülfürik asit bazlı vanadyum piller yaklaşık 10 ile 40 °C arasında çalışır. Bu sıcaklık aralığının altında, iyon aşılanmış sülfürik asit kristalleşir.[21] Pratik uygulamalarda gidiş-dönüş verimliliği yaklaşık % 70-80'dir.[22]
Önerilen iyileştirmeler
Skyllas-Kazacos'un orijinal VRFB tasarımı, maksimum vanadyum konsantrasyonunu 1,7 M vanadyum iyonu ile sınırlayan VRFB çözeltilerindeki tek anyon olarak sülfat (vanadyum sülfat(lar) ve sülfürik asit olarak eklenmiştir) kullanmıştır.[23] 1990'larda Skyllas-Kazacos, 2 M vanadyum çözeltilerini 5 ila 45oC sıcaklık aralığında stabilize etmek için amonyum fosfat ve diğer inorganik bileşiklerin çökelme inhibitörleri olarak kullanılabileceğini keşfetti ve 1993 yılında UNSW tarafından Stabilizing Agent patenti verildi. Bununla birlikte, bu keşif büyük ölçüde göz ardı edildi ve 2010 civarında Pacific Northwest Ulusal Laboratuvarı'ndan bir ekip, -20 ve +50 °C arasındaki tüm sıcaklık aralığında 2,5 M vanadyum konsantrasyonuna sahip VRFB çözeltilerinde kullanıma izin veren karışık bir sülfat- klorür elektroliti önerdi.[24][25] V+5/V +4 çiftinin standart denge potansiyeline dayanarak klorürü oksitlemesi beklenir ve bu nedenle daha önceki VRFB çalışmalarında klorür çözeltilerinden kaçınılmıştır. V+5 çözeltilerinin klorür varlığında şaşırtıcı oksidatif stabilitesi (her ne kadar sadece yaklaşık %80'in altında şarj durumunda olsa da) aktivite katsayıları temelinde açıklanmıştır.[26] Birçok araştırmacı, V(V)'nin yüksek sıcaklıklarda artan stabilitesini, V(V)'nin termal çökelme dengesini V205'ten uzağa kaydıran karışık asit elektrolitindeki daha yüksek proton konsantrasyonuyla açıklar. Bununla birlikte, HCl çözeltilerinin yüksek buhar basıncı ve şarj etme sırasında klor oluşumu olasılığı nedeniyle, bu tür karışık elektrolitler yaygın olarak benimsenmemiştir.[27]
Başka bir varyasyon, vanadyum bromür tuzlarının kullanılmasıdır. Br2/2Br - çiftinin redoks potansiyeli V5+/4+' nınkinden daha negatif olduğundan, pozitif elektrot brom işlemi yoluyla çalışır.[28] Bununla birlikte, Br2'nin uçuculuğu ve aşındırıcılığı ile ilgili sorunlar nedeniyle, pek popülerlik kazanmadılar (benzer bir sorun için çinko-brom piline bakın). Bir vanadyum / seryum akış pili de önerilmiştir.[29]
Spesifik enerji ve enerji yoğunluğu
VRB'ler yaklaşık 20'Wh/kg (72 kJ/kg) lik belirli bir enerjiye ulaşır (elektrolit) Çökme inhibitörleri yoğunluğu yaklaşık 35'Wh/kg (126 kJ/kg)e çıkarabilir. elektrolit sıcaklığını kontrol ederek daha yüksek yoğunluklar mümkündür. Spesifik enerjisi, diğer şarj edilebilir pil türlerine kıyasla düşüktür (örn. kurşun-asit, 30–40 Wh/kg (108–144 kJ/kg); ve lityum iyon, 80–200 Wh/kg (288–720 kJ/kg)).
Uygulamalar
VRFB'lerin büyük potansiyel kapasitesi, şebeke ölçekli rüzgar ve güneş sistemlerinin düzensiz çıktısını tamponlamak için en uygun olabilir.[11]
Azaltılmış kendi kendine deşarjları, onları, GATOR mayın sisteminin sensör bileşenleri gibi askeri teçhizatta olduğu gibi, az bakımla uzun vadeli enerji depolaması gerektiren uygulamalarda potansiyel olarak uygun hale getirir.[11][30]
Kurşun-asit aküler veya dizel jeneratörlerin yerini alabilecekleri kesintisiz güç kaynağı uygulamalarına çok uygun, hızlı yanıt sürelerine sahiptirler. Hızlı yanıt süresi, frekans regülasyonu için de faydalıdır. Bu yetenekler, VRFB'leri mikro şebekeler, frekans regülasyonu ve yük kaydırma için etkili bir "hepsi bir arada" çözüm haline getirir.[11]
Vanadyum redoks pillerini finanse eden veya geliştiren şirketler
Vanadyum redoks pillerini finanse eden veya geliştiren şirketler arasında Avustralya'da Sumitomo Electric Industries,[45] CellCube (Enerox),[46] UniEnergy Technologies,[47] StorEn Technologies,[48][49] Amerika Birleşik Devletleri'nde Largo Energy[50] ve Ashlawn Energy;[51] Güney Kore, Gyeryong-si'de H2;[52]Yenilenebilir Enerji Dinamiği Teknolojisi, Birleşik Krallık'ta[53] Invinity Energy Systems,[54] Avrupa'da VoltStorage[55] ve Schmalz;[56][57] Çin'de Prudent Energy;[58] Avustralya'da Avustralya Vanadyumu, CellCube ve North Harbour Clean Energy;[59][60] Avustralya'da Yadlamalka Energy Trust ve Invinity Energy Systems;[61][62] Suudi Arabistan'da EverFlow Energy JV SABIC SCHMID Group[63] ve Güney Afrika'da Bushveld Minerals.[64]
^Alotto (2014). "Redox Flow Batteries for the storage of renewable energy: a review". Renewable & Sustainable Energy Reviews. 29: 325-335. doi:10.1016/j.rser.2013.08.001.
^Spagnuolo (2016). "Vanadium Redox Flow Batteries: Potentials and Challenges of an Emerging Storage Technology". IEEE Industrial Electronics Magazine. 10 (4): 20-31. doi:10.1109/MIE.2016.2611760.
^Mustafa (March 2017). "Fabrication of Freestanding Sheets of Multiwalled Carbon Nanotubes (Buckypapers) for Vanadium Redox Flow Batteries and Effects of Fabrication Variables on Electrochemical Performance". Electrochimica Acta. 230: 222-235. doi:10.1016/j.electacta.2017.01.186. ISSN0013-4686.
^Mustafa (1 Ocak 2017). "Insights on the Electrochemical Activity of Porous Carbonaceous Electrodes in Non-Aqueous Vanadium Redox Flow Batteries". Journal of the Electrochemical Society. 164 (14): A3673-A3683. doi:10.1149/2.0621714jes. ISSN0013-4651.
^Mustafa (May 2018). "Effects of carbonaceous impurities on the electrochemical activity of multiwalled carbon nanotube electrodes for vanadium redox flow batteries". Carbon. 131: 47-59. doi:10.1016/j.carbon.2018.01.069. ISSN0008-6223.
^Jin (25 Haziran 2013). "Identifying the Active Site in Nitrogen-Doped Graphene for the VO 2+ /VO 2 + Redox Reaction". ACS Nano. 7 (6): 4764-4773. doi:10.1021/nn3046709. PMID23647240.
^Inorganic Chemistry. 5th. W. H. Freeman. 2010. s. 153. ISBN978-1-42-921820-7.Yazar |ad1= eksik |soyadı1= (yardım)
^"Chapter 6. Chemical Energy Storage". Storage and Hybridization of Nuclear Energy - Techno-economic Integration of Renewable and Nuclear Energy. London: Academic Press. 2019. ss. 177-227. doi:10.1016/B978-0-12-813975-2.00006-5. ISBN9780128139752.
^M. Skyllas-Kazacos, M. Rychcik and G. Robins Robert, "All vanadium redox battery." 1986AU-0055562 1986-04-02.
^Li (2011). "A stable vanadium redox-flow battery with high energy density for large-scale energy storage". Advanced Energy Materials. 1 (3): 394-400. doi:10.1002/aenm.201100008.
^Yang (September 2019). "Investigations on physicochemical properties and electrochemical performance of sulfate-chloride mixed acid electrolyte for vanadium redox flow battery". Journal of Power Sources. 434: Article 226719. doi:10.1016/j.jpowsour.2019.226719.
^Roznyatovskaya (2019). "Vanadium electrolyte for all-vanadium redox-flow batteries: the effect of the counter ion". Batteries. 5 (1): 13. doi:10.3390/batteries5010013.