Share to: share facebook share twitter share wa share telegram print page

 

Limit

Limit kelimesi Latince Limes ya da Limites 'den gelmekte olup sınır, uç nokta anlamındadır. Öklid ve Arşimet tarafından eğrisel kenarlara sahip şekillerle ilgili olan teoremlerde kullanılmıştır. Limit kavramı, çok önceleri kullanılmasına rağmen sonra unutulmuş ve daha sonra Newton ile Leibniz'in eserlerinde görülmüştür. Mesela, diferansiyel hesapta bir eğri (daire gibi) sonsuz küçük uzunlukta sonsuz kenara sahip bir çokgen olarak kabul edilir. Limit kavramından ortaya çıkan diferansiyel hesap, pek çok fizik probleminin kolayca ele alınmasını sağlar.

Matematiksel tanımı

f(x) fonksiyonu bir açık aralıkta tanımlanmış olsun ve L bir gerçek sayı olsun. Bütün değerleri için, bir bulunabiliyor, öyle ki bütün sağlayan için, eşitsizliği doğru ise; L, f(x)'in a noktasındaki limitidir.

Bir fonksiyonun a'daki limiti (L):

şeklinde gösterilir.

Ve şöyle okunur "x a'ya giderken, f(x)'in limiti L'ye eşittir". x, a'ya yaklaşırken f(x) fonksiyonunun limit L'ye yaklaştığı sağ ok () ile gösterilir.

f(x) L

1821'de Augustin Louis Cauchy, Karl Weierstrass’ı takiben yukarıdaki tanımlamadaki bir fonksiyonun limitinin tanımını şekillendirdi,19. Yüzyılda  limitin (ε,δ) tanımlamasıyla tanınan hale geldi. ε tanımının kullanımı(Yunanca küçük epsilon harfi) her küçük pozitif sayıyı gösterir. Böylece “f(x) isteğe bağlı olarak L’ye yakın olur”, sonuçta f(x) (L − ε, L + ε) aralığında yer alır demektir, aynı zamanda mutlak değer işareti kullanılarak da yazılabilir  |f(x) − L| < ε.”x c’ye yaklaşırken” ifadesi, baktığımız c'den uzak olan x'lerin bir  δ (Yunanca küçük delta harfi) pozitif sayısından küçük olduğunu gösterir. x'lerin  ya (c − δ, c) ya da (cc + δ) içindeki değerleri 0 < |x − c| < δ ile ifade edilebilir. İkinci eşitsizlik x c'nin δ uzaklığı içinde olduğunu ifade ederken, ilk eşitsizlik x ve c arasındaki uzaklık 0'dan büyüktür ve x ≠ c demektir.

Yukarıdaki bir limitin tanımlamasının  f(c) ≠ L olsa bile doğru olduğunu unutmayalım. Gerçekten f fonksiyonunun c'de tanımlanmasına gerek yoktur.

böyleyse f(1) tanımlanmaz (bkz. sıfır bölü sıfır), henüz x istenildiği kadar 1'e yakın hareket ederken, f(x) buna bağlı olarak 2'ye yaklaşıyor.

Böylece, x'i 1'e yeterince yaklaştırarak, f(x) 2'nin limitine istenildiği kadar yaklaştırılabilir.

Diğer bir deyişle,

Bu aynı zamanda cebirsel olarak da hesaplanabilir,

her gerçek sayılar için x≠1.

Bundan beri x+1, 1'de x'in içinde süreklidir, şimdi x'e 1 yazabiliriz, böylece

Sonsuz değerlerde limitlere ek olarak, fonksiyonların aynı zamanda sonsuzda limitleri vardır.

Örneğin, şunu dikkate alalım,

f(100)=1.9900

f(1000)=1.9990

f(10000)=1.99990

x aşırı büyüyünce, f(x)’in değeri 2’ye yaklaşıyor, ve f(x)’in değeri aynı zamanda istenirse sadece x’i yeterince büyük seçerek 2’ye tek olarak yakın yapılabilir. Bu durumda x sonsuza giderken f(x)’in limiti 2 olur. Matematiksel gösterimde,

Dizilerin limiti

Şu diziyi ele alalım:  1.79, 1.799, 1.7999,... Dizinin limiti, sayılar 1,8’e “yaklaşıyor” olarak gözlenebilir.

Biçimsel olarak,  a1a2, ... ‘yı gerçek sayılardan bir dizi olarak varsayalım. Dizinin limiti gerçek sayı L olarak belirtilebilir, şöyle ki;

şöyle okunur

“n sonsuza giderken  an ‘in limiti L’ye eşittir”

şu anlama gelir

her gerçek sayı için ε > 0, her n>N için bir N doğal sayısı vardır. |an − L| < ε.

Sezgisel olarak, bu demek oluyor ki; mutlak değer |an – L| değeri, an ve L arasında olduğundan itibaren dizinin tüm elemanları limite istenildiği kadar yaklaşabilir. Her dizinin limiti vardır; eğer öyleyse ona yakınsak denir, eğer değilse ıraksaktır.

Önemli limitler

Limit teoremleri

Eğer ve ise o zaman aşağıdaki denklemler doğrudur:

  • , eğer .
  • Eğer ve , o zaman .
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9