Share to: share facebook share twitter share wa share telegram print page

 

Kümülant

Olasılık kuramı ve istatistik bilim dallarında bir rassal değişken Xin μ = E(X) olarak ifade edilen beklenen değeri ve σ² = E((X - μ)²) olarak ifade edilen varyansı bulunur. Bunlar ilk iki kümülant olarak belirlenirler; yani

κ1 = μ ve κ² = σ².

n tane kümülant κn bir 'kümülant üreten fonksiyon tarafından belirlenir; bu fonksiyon g(t) olarak şöyle ifade edilebilir:

Bu fonksiyonun türevleri var olduğu kabul edilirse, kümülantlar g(t) fonksiyonunun (sıfırda) türevleri ile şöyle verilir:

κ1 = μ = g' (0),
κ2 = σ² = g' '(0),
κn = g(n) (0).

κn kümülantlari verilmiş olan bir olasılık dağılımı Edgeworth serileri açılımı suretiyle yaklaşık olarak bulunabilir.

Tarihçe

Kümülant kavramı 1889'da Danimarkalı matematikçi ve istatistikçi Thorvald N. Thiele (1838 - 1910) tarafından yarı-değişmezler adı altında ortaya atılmıştır. Kümülant adı ilk defa İngiliz istatistikçisi Ronald Fisher tarafından ortaya atılıp sonradan bu kavram Fisher ve İngiliz istatistikçi Wishart tarafından geliştirilmiştir.[1]

Momentler ve kümülantlar

Bir olasılık dağılımı için kümülantlar o dağılımın momentleri ile yakından ilişkilidir. Kümülant kavramının geliştirilmesi ve bunların momentler kavramına pratik kullanımda tercih edilmesi nedeni bağımsız iki rassal değişken X ve Y için şu ifadenin bulunmasına bağlıdır;

Böylece her kümülant daha önce toplam olarak elde edilmiş karşıt kümülantların toplamının bir toplamı olur.

Moment üreten fonksiyon şöyle verilir:

Böylece kümülant üreten fonksiyon moment üreten fonksiyonun logaritmasıdır.

Birinci kümülant beklenen değer; ikinci kümülant varyans ve ikinci ve üçüncü kümülant merkezsel momentler olur. Ancak daha yüksek derecede kümülantlar ne momentler ne de merkezsel momentlere karşıttırlar.

Kümülantlar momentlere şu (yineleme) formülü ile bağlıdırlar:

ninci moment μ′n ilk n kümülant ile kurulmuş ninci derece bir polinomdur; yani (Bunun katsayıları hep pozitif olur ve Faà di Bruno'nin formülünde bulunan katsayılardır.)

Merkezsel momentler olan μn (DIKKAT μ′n DEĞIL) ile kümülant bağlılığı şöyledir:

Karakteristik fonksiyon ve kümülantlar

Bazı istatistikçiler kümülant üreten fonksiyonu başka bir yol kullanarak karakteristik fonksiyonlar yoluyla şöyle tanımlamayı tercih ederler.[2][3]

Bu türlü tanımlamanın avantajı eğer daha yüksek derecelerde momentler bulunmasa bile uygun kümülantlarin elde edilmesini sağlamasıdır.

Ayrıca bakınız

Kaynakça

  1. ^ Fisher 1929'da ilk defa Harold Hotellinge yazdığı bir mektupta bu kavramı kumulatif moment fonksiyonu adi ile kullanmıştır. İlk kümülant adı olarak kullanılması R. Fisher ve J.Wishart (1931) "The derivation of the pattern formulae of two-way partitions from those of simpler patterns", Proceedings of the London Mathematical Society, 2. Seri C. 33 say. 195-208 makalesindedir.
  2. ^ Kendall, M.G., Stuart, A. (1969) The Advanced Theory of Statistics, Volume 1 (3rd Edition). Griffin, London. (Section 3.12)
  3. ^ Lukacs, E. (1970) Characteristic Functions (2nd Edition). Griffin, London. (Page 27)

Dış bağlantılar

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9