Alfred TarskiAlfred Tarski (/ˈtɑːrski/, 14 Ocak 1901 – 26 Ekim 1983), doğduğunda adı Alfred Teitelbaum,[3][4][5] olan bir Polonyalı-Amerikalı,[6] mantıkçı ve matematikçi.[7] Model teorisi, metamatematik ve cebirsel mantık konusundaki çalışmaları ile tanınan üretken bir yazar, aynı zamanda soyut cebir, topoloji, geometri, ölçü teorisi, matematiksel mantık, küme teorisi ve analitik felsefeye de katkıda bulundu. Alfred Tarski, 1930'larda mantıkta önemli bir çalışma olan semantik metodunu biçimlendirmiştir. Bu metot mânâları ile mânâların gösterdiği simgeler arasındaki bağı ele alarak tartışmaktadır. Daha başlangıçta semantik, dil çalışmalarında yeni imkânlar açmış ve bu gibi nesne-mânâ ilişkilerinin münakaşalarında tabii bir metot sunmuştur. Polonya'da Varşova Üniversitesi'nde eğitim gördü ve Lwów-Varşova Mantık Okulunun ve Varşova Matematik Okulunun bir üyesi olarak 1939'da Amerika Birleşik Devletleri'ne göç etti ve burada 1945'te vatandaşlık aldı. Tarski, 1942'den 1983'teki ölümüne kadar Kaliforniya Üniversitesi, Berkeley'de matematik dersleri vermiş ve araştırmalar yürütmüştür.[8] Biyografi yazarları Anita Burdman Feferman ve Solomon Feferman, "Çağdaşı Kurt Gödel ile birlikte, özellikle hakikat kavramı ve modeller teorisi üzerine yaptığı çalışmalar sayesinde, yirminci yüzyılda mantığın çehresini değiştirdi" diyorlar.[9] HayatıAlfred Tarski, rahat koşullarda Polonyalı Yahudiler olan ebeveynlerin çocuğu olarak Alfred Teitelbaum (Lehçe yazım şekli: "Tajtelbaum") adıyla doğdu. Matematiksel yeteneklerini ilk olarak ortaokuldayken Varşova'daki Szkoła Mazowiecka’da gösterdi.[10] Bununla birlikte, biyoloji okumak için 1918'de Varşova Üniversitesi'ne girdi.[11] Polonya 1918'de bağımsızlığını yeniden kazandıktan sonra, Varşova Üniversitesi, Jan Łukasiewicz, Stanisław Leiewsniewski ve Wacław Sierpiński'nin önderliğine girdi ve kısa sürede mantık, temel matematik ve matematik felsefesinde dünyanın önde gelen araştırma kurumu oldu. Leśniewski, Tarski'nin bir matematikçi olarak potansiyelini fark etti ve onu biyolojiyi terk etmeye teşvik etti.[11] Bundan böyle Tarski, Łukasiewicz, Sierpiński, Stefan Mazurkiewicz ve Tadeusz Kotarbiński tarafından verilen kurslara katıldı ve 1924'te Leśniewski'nin gözetiminde doktora yapan tek kişi oldu. Tezinin başlığı O wyrazie pierwotnym logistyki (On the Primitive Term of Logistic; 1923'te yayınlandı). Tarski ve Leśniewski çok geçmeden birbirlerine soğuk davrandılar. Bununla birlikte, daha sonraki yaşamında Tarski, karşılık verilen Kotarbiński'ye en içten övgüsünü sundu. 1923'te Alfred Teitelbaum ve kardeşi Wacław soyadlarını "Tarski" olarak değiştirdiler. Tarski kardeşler de Polonya'nın baskın dini olan Roma Katolikliğine geçtiler. Alfred, apaçık bir ateist olmasına rağmen bunu yaptı.[12][13] Varşova Üniversitesi'nde doktora yapan en genç kişi olduktan sonra Tarski, Polonya Pedagoji Enstitüsü'nde mantık, Üniversitede matematik ve mantık dersleri verdi ve Łukasiewicz'in asistanı olarak görev yaptı. Bu pozisyonlara düşük ücret verildiği için, Tarski ayrıca Varşova'daki bir ortaokulda matematik öğretti;[14] II. Dünya Savaşı'ndan önce, araştırma çapındaki Avrupalı entelektüellerin lise öğretmesi alışılmadık bir durum değildi. Dolayısıyla, 1923 ile 1939'da Amerika Birleşik Devletleri'ne gitmesi arasında, Tarski sadece birkaç ders kitabı ve birçoğu çığır açan birçok makale yazmakla kalmadı, aynı zamanda bunu öncelikle lise matematiğini öğreterek kendini destekleyerek yaptı. 1929'da Tarski, Katolik kökenli bir Polonyalı olan öğretmen arkadaşı Maria Witkowska ile evlendi. Maria, Sovyet-Polonya Savaşı'nda ordu için kurye olarak çalışmıştı. İki çocukları oldu; fizikçi olan oğlu Jan ve matematikçi Andrzej Ehrenfeucht ile evlenen kızı Ina.[15] Tarski, Lwów Üniversitesi'nde bir felsefe kürsüsü için başvurdu, ancak Bertrand Russell'ın tavsiyesi üzerine Leon Chwistek'e verildi.[16] 1930'da Tarski, Viyana Üniversitesi'ni ziyaret etti, Karl Menger'in kolokyumunda ders verdi ve Kurt Gödel ile tanıştı. Burs sayesinde, 1935'in ilk yarısında Menger'in araştırma grubuyla çalışmak üzere Viyana'ya dönebildi. Viyana Çevresinin bir sonucu olan Bilim Birliği hareketinin ilk toplantısında hakikat konusundaki fikirlerini sunmak için Viyana'dan Paris'e gitti. 1937'de Tarski, Poznań Üniversitesi'nde bir kürsüye başvurdu, ancak kürsü kaldırıldı.[17] Tarski'nin Bilim Birliği hareketiyle olan bağları muhtemelen hayatını kurtardı, çünkü Eylül 1939'da Harvard Üniversitesi'nde düzenlenen Bilim Birliği Kongresi'ne davet edilmesiyle sonuçlandı. Böylece Ağustos 1939'da, Almanya'nın ve Sovyetlerin Polonya'yı işgalinden ve II. Dünya Savaşı'nın patlak vermesinden önce Polonya'dan Amerika Birleşik Devletleri'ne giden son gemiyle Polonya'dan ayrıldı. Tarski isteksizce ayrıldı, çünkü Leśniewski birkaç ay önce ölmüş ve Tarski'nin doldurmayı umduğu bir boşluk yaratmıştı. Nazi tehdidinden habersiz, karısını ve çocuklarını Varşova'da bıraktı. Onları 1946'ya kadar bir daha görmedi. Savaş sırasında, geniş Yahudi ailesinin neredeyse tamamı Alman işgal yetkilileri tarafından öldürüldü. Tarski, Amerika Birleşik Devletleri'nde bir kez geçici öğretim ve araştırma pozisyonlarında çalıştı: Harvard Üniversitesi (1939), City College of New York (1940) ve Guggenheim Bursu sayesinde, Gödel ile yeniden tanıştığı yer olan Princeton'daki İleri Araştırma Enstitüsü (1942). 1942'de Tarski, kariyerinin geri kalanını burada geçirdiği California Üniversitesi, Berkeley'de Matematik Bölümü'ne katıldı. Tarski, 1945'te Amerikan vatandaşı oldu.[18] 1968'den emeritus olmasına rağmen, 1973'e kadar öğretmenlik yaptı ve ölümüne kadar doktora adaylarının danışmanlığını yaptı.[19] Tarski, Berkeley'de şaşırtıcı ve talepkar bir öğretmen olarak ün kazandı, birçok gözlemcinin belirttiği bir gerçek:
Tarski, Andrzej Mostowski, Bjarni Jónsson, Julia Robinson, Robert Vaught, Solomon Feferman, Richard Montague, James Donald Monk, Haim Gaifman, Donald Pigozzi ve Roger Maddux'un yanı sıra, bu alandaki klasik bir metin olan Model Theory’nin (1973)[23] yazarları Chen Chung Chang ve Jerome Keisler ile birlikte (kronolojik sırayla) yirmi dört doktora (Ph.D) tezini yönetti.[24][25] Ayrıca Alfred Lindenbaum, Dana Scott ve Steven Givant'ın tezlerini de güçlü bir şekilde etkiledi. Tarski'nin beş öğrencisi kadındı, bu, o dönemde yüksek lisans öğrencilerinin ezici bir çoğunluğunu erkeklerin temsil ettiği göz önüne alındığında dikkate değer bir gerçektir.[25] Ancak, bu öğrencilerden en az ikisiyle evlilik dışı ilişkileri vardı. Başka bir kız öğrencinin çalışmasını erkek bir meslektaşına gösterdikten sonra, meslektaşı bunu kendisi yayınlayarak kız öğrencinin lisansüstü eğitimini bırakmasına ve daha sonra farklı bir üniversiteye ve farklı bir danışmana gitmesine neden oldu.[26] Tarski, University College, London (1950, 1966), Paris'teki Institut Henri Poincaré (1955), Berkeley'deki Miller Institute for Basic Research (1958 – 60), Kaliforniya Üniversitesi, Los Angeles (1967) ve Şili Papa Katolik Üniversitesi (1974-75)'nde dersler verdi. Kariyeri boyunca kazandığı pek çok ayrıcalık arasında, Tarski 1958'de Amerika Birleşik Devletleri Ulusal Bilimler Akademisi, İngiliz Akademisi ve Hollanda Kraliyet Sanat ve Bilim Akademisi'ne seçildi,[27] 1975'te Şili Papalık Katolik Üniversitesi'nden, 1977'de Marsilya'daki Paul Cézanne Üniversitesi'nden ve Calgary Üniversitesi'nden aynı zamanda 1981'de Berkeley Citation'dan onur dereceleri aldı. Tarski, 1944–46 Sembolik Mantık Derneği ve 1956–57 Uluslararası Bilim Tarihi ve Felsefesi Birliği'ne başkanlık etti. Ayrıca Algebra Universalis’in fahri editörüydü.[28] MatematikçiTarski'nin matematiksel ilgi alanları son derece genişti. Derlenmiş makaleleri, çoğu mantık değil matematik üzerine olmak üzere yaklaşık 2.500 sayfaya yayılıyor. Tarski'nin matematiksel ve mantıksal başarılarının eski öğrencisi Solomon Feferman tarafından kısa bir incelemesi için bkz. Feferman ve Feferman'daki "Interludes I – VI".[29] Tarski'nin 19 yaşında yayınlanan ilk makalesi, hayatı boyunca geri döndüğü bir konu olan küme teorisi üzerineydi.[kaynak belirtilmeli]. 1924'te, o ve Stefan Banach, Seçim Aksiyomu kabul edilirse, bir topun sınırlı sayıda parçaya bölünebileceğini ve daha sonra daha büyük boyutlu bir top halinde yeniden birleştirilebileceğini veya alternatif olarak iki top halinde yeniden birleştirilebileceğini kanıtladılar. her biri orijinal boyuta eşit boyuttadır. Bu sonuç artık Banach-Tarski paradoksu olarak adlandırılıyor. Temel cebir ve geometri için bir karar yönteminde Tarski, niceleyici eleme yöntemi ile toplama ve çarpma altındaki gerçel sayıların birinci dereceden teorisinin karar verilebilir olduğunu gösterdi. (Bu sonuç sadece 1948'de ortaya çıkarken, geçmişi 1930'a dayanıyor ve Tarski'de (1931) bahsediliyor.) Bu çok ilginç bir sonuç, çünkü Alonzo Church 1936'da Peano aritmetiğinin (doğal sayılar teorisi) karar verilemeyeceğini kanıtladı. Peano aritmetiği, Gödel'in eksiklik teoremi tarafından da eksiktir. 1953 Kararsız teoriler (Undecidable theories)’inde Tarski ve ark. kafes teorisi, soyut projektif geometri ve kapanış cebirleri dahil olmak üzere birçok matematiksel sistemin karar verilemez olduğunu gösterdi. Abelyen gruplar teorisi karar verilebilir, ancak Abelyen olmayan grupların teorisi karar verilebilir değildir. 1920'lerde ve 30'larda Tarski genellikle lise geometri dersi verirdi. Tarski, 1926'da Mario Pieri'nin bazı fikirlerini kullanarak, Hilbert'inkinden çok daha özlü olan düzlem Öklid geometrisi için orijinal bir aksiyomatizasyon tasarladı. Tarski'nin aksiyomları, küme teorisinden yoksun, bireyleri nokta olan ve yalnızca iki ilkel ilişkiye sahip birinci dereceden bir teori oluşturur. 1930'da, bu teorinin karar verilebilir olduğunu kanıtladı, çünkü daha önce karar verilebilir olduğunu kanıtladığı başka bir teoriye, yani birinci dereceden gerçek sayı teorisine eşlenebilir. 1929'da Öklid katı geometrisinin çoğunun, bireyleri küreler (bir ilkel kavram), tek bir ilkel ikili ilişki "içinde bulunan" ve diğer şeylerin yanı sıra, çevrelemenin küreleri kısmen düzenlediğini ima eden iki aksiyom olan birinci dereceden bir teori olarak yeniden biçimlendirilebileceğini gösterdi. Tüm bireylerin küre olması gerekliliğini gevşetmek, Lesniewski'nin varyantından çok daha kolay ifşa edilmesi için mereolojinin resmîleştirilmesini sağlar. Tarski, hayatının sonlarına doğru Tarski ve Givant (1999) adıyla yayımlanan çok uzun bir mektup yazdı ve geometri üzerine yaptığı çalışmaları özetledi. Kardinal Cebri (Cardinal Algebras), modelleri kardinal sayıların aritmetiğini içeren cebirleri inceledi. Ordinal Cebir (Ordinal Algebras), sıralama türlerinin toplamsal teorisi için bir cebir ortaya koyar . Kardinal, ancak ordinal değil, toplama takas edilir. 1941'de Tarski, binary ilişkiler üzerine önemli bir makale yayınladı ve ilişki cebiri ve onun metamatematiği üzerine çalışmaya başladı. Bu, Tarski ve öğrencilerini hayatının dengesinin büyük bir bölümünde meşgul etti. Bu keşif (ve Roger Lyndon'ın yakından ilgili çalışması) ilişki cebirinin bazı önemli sınırlamalarını ortaya çıkarırken, Tarski ayrıca (Tarski ve Givant 1987) ilişki cebirinin çoğu aksiyomatik küme teorisini ve Peano aritmetiğini ifade edebileceğini gösterdi. İlişki cebirine giriş için bkz. Maddux (2006). 1940'ların sonlarında, Tarski ve öğrencileri, klasik cümle mantığına göre İki elemanlı Boole cebrinin ne olduğu, birinci dereceden mantık için silindirik cebirler tasarladılar. Bu çalışma Tarski, Henkin ve Monk'un (1971, 1985) iki monografında doruğa ulaştı. MantıkçıTarski'nin öğrencisi Vaught, Tarski'yi Aristotle, Gottlob Frege ve Kurt Gödel ile birlikte tüm zamanların en büyük dört mantıkçısından biri olarak derecelendirdi.[9][30][31] Ancak Tarski sık sık Charles Sanders Peirce'e, özellikle de ilişkilerin mantığı alanındaki öncü çalışmalarına büyük hayranlık duyduğunu ifade etti. Tarski mantıksal sonuç için aksiyomlar üretti ve tümdengelimli sistemler, mantığın cebiri ve tanımlanabilirlik teorisi üzerinde çalıştı. 1950'lerde ve 60'larda kendisinin ve bazı Berkeley öğrencilerinin geliştirdiği model teorisiyle sonuçlanan semantik yöntemleri, Hilbert'in ispat-teorik metamatatiğini kökten değiştirdi.
Tarski'nin 1936 tarihli "Mantıksal sonuç kavramı üzerine (On the concept of logical consequence)" makalesinde, ancak ve ancak öncüllerin her modeli bir sonucun modeli ise, bir argümanın sonucunun mantıksal olarak öncüllerinden çıkacağını savundu. 1937'de, tümdengelim yönteminin doğası ve amacı ile mantığın bilimsel çalışmalardaki rolü hakkındaki görüşlerini açıkça sunan bir makale yayınladı. Lise ve lisans eğitiminde mantık ve aksiyomatik üzerine öğretimi, önce Lehçe, ardından Almanca çevirisi ve son olarak 1941 İngilizce çevirisiyle Mantığa Giriş ve Dedüktif Bilimler Metodolojisi (Introduction to Logic and to the Methodology of Deductive Sciences) olarak yayınlanan klasik bir kısa metinle sonuçlandı. Tarski'nin 1969 tarihli "Hakikat ve ispatı (Truth and proof)", hem Gödel'in eksiklik teoremlerini hem de Tarski tanımlanamazlık teoremini ele aldı ve matematikteki aksiyomatik yöntem için sonuçları üzerinde kafa yordu. Biçimlendirilmiş dillerde gerçek1933'te Tarski, Lehçe olarak "Pojęcie prawdy w językach nauk dedukcyjnych",[33] "Biçimsel diller için hakikatin matematiksel bir tanımını ortaya koyma (Setting out a mathematical definition of truth for formal languages)" başlıklı çok uzun bir makale yayınladı. 1935 Almanca tercümesi, bazen "Wahrheitsbegriff" olarak kısaltılan "Biçimlendirilmiş dillerde hakikat kavramı (The concept of truth in formalized languages)" başlıklı "Der Wahrheitsbegriff in den formalisierten Sprachen" idi. Logic, Semantics, Metamathematics cildinin 1956 ilk baskısında bir İngilizce çevirisi yayınlandı. 1923'ten 1938'e kadar olan bu makale koleksiyonu, 20. yüzyıl analitik felsefesinde bir olaydır, sembolik mantık, anlambilim ve dil felsefesine bir katkıdır. İçeriğinin kısa bir tartışması için bkz. Sözleşme T (ve ayrıca T-şeması). Son dönemdeki bazı felsefi tartışmalar, Tarski'nin biçimlendirilmiş diller için doğruluk teorisinin bir gerçeğin karşılık gelen teorisi olarak görülebileceği dereceyi incelemektedir. Tartışma, doğru bir tanım için Tarski'nin maddi yeterlilik durumunun nasıl okunacağına odaklanıyor. Bu koşul, doğruluk teorisinin, gerçeğin tanımlandığı dilin tüm cümleleri p için teorem olarak aşağıdakilere sahip olmasını gerektirir:
(burada p, "p" ile ifade edilen önermedir) Tartışma, bu formdaki cümlelerin okunup okunmayacağı ile ilgilidir.
sadece bir deflasyonist hakikat teorisini ifade etmek veya gerçeği daha önemli bir özellik olarak somutlaştırmak olarak (bkz. Kirkham 1992). Tarski'nin hakikat teorisinin biçimlendirilmiş diller için olduğunu anlamak önemlidir, bu nedenle doğal dildeki örnekler Tarski'nin doğruluk teorisinin kullanımının örnekleri değildir. Mantıksal sonuç1936'da Tarski, bir önceki yıl Paris'teki Uluslararası Bilimsel Felsefe Kongresi'nde verdiği bir konferansın Lehçe ve Almanca versiyonlarını yayınladı. Bu makalenin yeni bir İngilizce çevirisi olan Tarski (2002), makalenin Almanca ve Lehçe versiyonları arasındaki birçok farklılığı vurgulamakta ve Tarski'de (1983) bazı yanlış çevirileri düzeltir. Bu yayın, (semantik) mantıksal sonucun modern model-teorik tanımını veya en azından bunun temelini ortaya koymaktadır. Tarski'nin fikrinin tamamen modern bir kavram olup olmadığı, farklı alanlara sahip modelleri (ve özellikle farklı temel alanlara sahip modelleri) kabul edip etmeyeceğine bağlıdır. Bu soru, güncel felsefi literatürde bir miktar tartışma konusudur. John Etchemendy, Tarski'nin çeşitli alanları ele alışıyla ilgili son tartışmaların çoğunu canlandırdı.[34] Tarski, mantıksal sonuç tanımının, terimlerin mantıksal ve ekstra mantıksal olarak bölünmesine bağlı olduğuna işaret ederek bitirir ve böyle bir nesnel bölünmenin ortaya çıkacağına dair bazı şüphelerini ifade eder. "Mantıksal Kavramlar Nelerdir?" bu nedenle "Mantıksal Sonuç Kavramı Üzerine" devam ediyor olarak görülebilir. Mantıksal kavramlar üzerine çalışmalarTarski'nin son dönem felsefi literatürde dikkat çeken bir diğer teorisi de "Mantıksal Kavramlar Nelerdir? (What are Logical Notions?)" (Tarski 1986). Bu, ilk olarak 1966'da Londra'da ve daha sonra 1973'te Buffalo'da yaptığı konuşmanın yayınlanmış hali; John Corcoran tarafından doğrudan katılımı olmadan düzenlenmiştir. History and Philosophy of Logic dergisinde en çok alıntı yapılan makale oldu.[35] Konuşmada Tarski, mantıksal işlemlerin ("kavramlar" dediği) mantık dışı ile sınırlandırılmasını önerdi. Önerilen kriterler, 19. yüzyıl Alman matematikçi Felix Klein'ın Erlangen programından türetildi. Mautner (1946'da) ve muhtemelen Portekizli matematikçi Sebastiao e Silva tarafından yazılan bir makale, Tarski'nin Erlangen Programını mantığa uygulamasında bekledi. Bu program, çeşitli geometri türlerini (Öklid geometrisi, afin geometri, topoloji, vb.), O geometrik teorinin nesnelerini değişmez bırakan, uzayın kendisine birebir dönüşümü türüne göre sınıflandırdı. (Birebir dönüşüm, mekanın her noktasının mekanın başka bir noktasıyla ilişkilendirilmesi veya eşleştirilmesi için mekanın kendi üzerine fonksiyonel bir haritasıdır. Bu nedenle, "30 derece döndür" ve "2 çarpanıyla büyüt", basit tek tip birebir dönüşümlerin sezgisel tanımlamalarıdır.) Sürekli dönüşümler, topoloji nesnelerine, Öklid geometrisine benzerlik dönüşümlerine vb. yol açar. İzin verilen dönüşümlerin aralığı genişledikçe, dönüşümlerin uygulanmasıyla korunduğu şekliyle ayırt edilebilen nesnelerin aralığı daralır. Benzerlik dönüşümleri oldukça dardır (noktalar arasındaki göreceli mesafeyi korurlar) ve bu nedenle nispeten birçok şeyi (örneğin, eşkenar üçgenler eşkenar olmayan üçgenlerden) ayırt etmemize izin verir. Sürekli dönüşümler (sezgisel olarak tek tip olmayan gerdirme, sıkıştırma, bükme ve bükmeye izin veren, ancak yırtılmaya veya yapıştırmaya izin vermeyen dönüşümler olarak düşünülebilir), bir çokgeni bir halkadan (ortasında bir delik olan halka) ayırt etmemize izin verir ancak iki çokgeni birbirinden ayırt etmemize izin vermez. Tarski'nin önerisi, bir alanın tüm olası birebir dönüşümlerini (otomorfizmleri) kendi üzerine düşünerek mantıksal kavramları sınırlandırmaktı. Alan terimi ile anlamsal mantık teorisi için bir modelin söylem evreni kastedilmektedir. Biri, etki alanı kümesiyle True doğruluk değeri ve boş kümeyle False doğruluk değeri tanımlanırsa, daha sonra aşağıdaki işlemler teklif kapsamında mantıksal olarak varsayılır:
Bazı yönlerden, mevcut öneri, Russell ve Whitehead'in Principia Mathematica’sının tüm mantıksal işlemlerinin, alanın kendisine birebir dönüşümleri altında değişmediğini kanıtlayan Lindenbaum ve Tarski'nin (1936) tersidir. Mevcut öneri ayrıca Tarski ve Givant (1987) 'de kullanılmaktadır. Solomon Feferman ve Vann McGee, Tarski'nin ölümünden sonra yayınlanan çalışmasında önerisini tartıştılar. Feferman (1999) öneri için problemler ortaya koyar ve bir çare önerir: Tarski'nin korumasını otomorfizmlerle değiştirerek korumayı keyfi homomorfizmlerle değiştirmek. Özünde, bu öneri, Tarski'nin önerisinin, belirli bir kardinalitenin farklı alanları ve farklı kardinalitelerin alanları arasında mantıksal işlemlerin aynı olmasıyla başa çıkma konusundaki zorluğunu ortadan kaldırır. Feferman'ın önerisi, Tarski'nin orijinal önerisiyle karşılaştırıldığında mantıksal terimlerin radikal bir şekilde sınırlandırılmasına neden oluyor. Özellikle, yalnızca özdeşliği olmayan standart birinci dereceden mantığın operatörleri mantıksal olarak sayılır. McGee (1996), Tarski'nin önerisi anlamında mantıksal olarak hangi işlemlerin mantıksal olduğunu, keyfi olarak uzun bağlaçlara ve ayrışmalara izin vererek birinci dereceden mantığı genişleten bir dilde ve rastgele birçok değişken üzerinde nicelemeye izin vererek tam bir açıklama sağlar. "Keyfi olarak", sayılabilir bir sonsuzluğu içerir. Çalışmaları
Ayrıca bakınız
Kaynakça
Konuyla ilgili yayınlar
Dış bağlantılar
|