Siden 1892 har 91 mindre jovianske[N 1] måner blitt oppdaget og fått navn etter elskerinner, erobringer eller døtre av den romerske gudenJupiter, eller hans greske forgjenger, Zevs. De galileiske månene er de klart største objektene i bane rundt Jupiter. De resterende månene og ringene utgjør tilsammen bare 0,003 prosent av den totale massen i bane rundt planeten.
Åtte måner er regulære satellitter med prograd og nær sirkulære baner som ikke har særlig inklinasjon i forhold til Jupiters ekvatorplan. De galileiske månene er sfæriske i form og ville ha blitt ansett som dvergplaneter eller planeter dersom de gikk i bane direkte rundt solen. De andre fire regulære satellittene er mye mindre og nærmere Jupiter; de er kilder til støvet i Jupiters ringer.
Månenes fysiske egenskaper og baneegenskaper varierer mye. De fire galileiske månene er alle over 3 100 km i diameter. Den største av dem, Ganymedes, er større enn Merkur og det niende største objektet i solsystemet etter solen og syv av planetene. Alle andre jovianske måner er mindre enn 250 km i diameter og de fleste overgår så vidt 5 km. Baneformene går fra nesten perfekt sirkulære til høyt eksentriske og inklinerte, og mange går i bane i motsatt retning av Jupiters rotasjon (retrograd bevegelse). Omløpstider varierer fra syv timer (mindre tid enn hva Jupiter bruker rundt sin egen akse) til omtrent tre tusen ganger mer (nesten tre år på jorden).
Opprinnelse og utvikling
Jupiters regulære satellitter antas å ha blitt dannet fra en sirkumplanetær skive, en ring av akkresjonsgass og fast støv analogt til en protoplanetarisk skive.[L 1][L 2] De kan være restene av galileiske massesatellitter som ble dannet tidlig i Jupiters historie.[L 1][4]
Simuleringer antyder at selv om skiven hadde en relativt lav masse til enhver tid, gikk en vesentlig del (flere titalls prosent) av Jupiters masse som var fanget fra soltåken gjennom skiven. Det kreves imidlertid bare en skivemasse på 2 % av Jupiters for å forklare de eksisterende satellittene,[L 1] og dermed kan det ha vært flere generasjoner av galileiske massesatellitter i Jupiters tidlige historie. Hver generasjon av satellitter ville ha gått i en spiral innover mot Jupiter på grunn av draget fra skiven med nye måner som ble dannet fra rester innfanget fra soltåken.[L 1] Innen tidspunktet for når dagens (muligens femte) generasjon ble dannet hadde skiven blitt tynnet ut til det punktet hvor den ikke lenger er sterkt utsatt for månenes baner.[4] De nåværende galileiske månene ble fortsatt påvirket og falt inn i og ble delvis beskyttet av en baneresonans som fremdeles eksisterer for Io, Europa og Ganymedes. Ganymedes' større masse betyr at den ville ha vandret innover i en større hastighet enn Europa eller Io.[L 1]
De ytre irregulære månene antas å stamme fra passerende asteroider mens skiven fremdeles var tilstrekkelig massiv til å absorbere mye av deres moment og fange dem inn i en bane. En rekke av disse brøt opp av påkjenningen av innfangingen eller ved en kollisjon med andre små legemer, og dannet familiene vi ser i dag.[L 3]
Fra 2010 til 2017 ble ytterligere 6 måner oppdaget: S/2010 J 2 og S/2010 J 1 i 2010, S/2011 J 1 og S/2011 J 2 i 2011, S/2016 J 1 i 2016 og S/2017 J 1 i 2017.[6] I 2018 ble det oppdaget ti nye måner, og flere ble oppdaget i 2021 og 2022. Dette får det antallet måner opp i 95.[7] Dette er det nest høyeste antallet måner rundt noen planet i solsystemet (Saturn har flere med 145 måner).
Navngiving
De galileiske månene til Jupiter (Io, Europa, Ganymedes og Callisto) ble navngitt av Simon Marius like etter oppdagelsen i 1610.[L 18] Frem til det 20. århundre ble imidlertid disse navnene tatt ut av bruk, og i stedet ble de i astronomisk litteratur bare referert til som «Jupiter I», «Jupiter II» osv., eller som «Jupiters første måne», «Jupiters andre måne» osv.[L 18] Navnene Io, Europa, Ganymedes og Callisto ble populære i det 20. århundre, mens de resterende månene, vanligvis nummerert med romertall V (5) til XII (12), forble uten navn.[L 19] Ved en populær, dog uoffisiell, konvensjon ble Jupiter V (oppdaget i 1892) gitt navnet Amalthea, først brukt av den franske astronomen Camille Flammarion.[5]
De andre månene ble i hoveddelen av astronomisk litteratur bare referert til ved sine romertall (dvs. Jupiter IX) frem til 1970-årene.[L 20] I 1975 tildelte Den internasjonale astronomiske unions (IAU) arbeidsgruppe for nomenklatur i det ytre solsystemet navn til satellittene V–XIII,[L 21] og utarbeidet en formell prosess for navngiving av fremtidige satellitter som blir oppdaget.[L 21] Praksisen var å navngi nyoppdagede måner rundt Jupiter etter elskerinner og favoritter av guden Jupiter (Zevs), og siden 2004 også etter deres etterkommere.[8] Alle Jupiters måner fra XXXIV (Euporie) er oppkalt etter døtrene til Jupiter eller Zevs.[8]
Indre satellitter eller Amaltheagruppen: Metis, Adrastea, Amalthea og Thebe. Disse går i bane svært nær Jupiter; de innerste to banene er mindre enn en joviansk dag. De to sistnevnte er henholdsvis den femte og den syvende største månene i det jovianske systemet. Observasjoner antyder at i hvert fall det største medlemmet, Amalthea, ikke ble dannet i sin nåværende bane, men lengre fra planeten eller at den er et innfanget himmellegeme fra solsystemet.[L 22] Sammen med et antall indre små måner, som enda ikke er oppdaget, fyller og vedlikeholder disse månene Jupiters svake ringsystem. Metis og Adrastea bidrar til å opprettholde Jupiters hovedring, mens Amalthea og Thebe vedlikeholder hver sin svake ytterring.[L 23][L 24]
Hovedgruppen eller galileiske måner: Io, Europa, Ganymedes og Callisto. Med radier som er større enn noen av dvergplanetene er de noen av de største objektene i solsystemet utenom solen og de åtte planetene etter masse, og Ganymedes overgår planeten Merkur i diameter. De fire månene er henholdsvis de fjerde, sjette, første og tredje største naturlige satellittene i solsystemet og inneholder nesten 99,999 % av all massen i bane rundt Jupiter. Planeten er nesten 5 000 ganger mer massiv enn de galileiske månene.[N 2] De indre månene er også del av en 1:2:4-baneresonans. Modeller antyder at de ble dannet av sakte akkresjon i en joviansk tåke med lav tetthet – en skive med gassen og støvet som fantes rundt Jupiter etter dannelsen – som varte opp mot 10 millioner år i tilfellet med Callisto.[L 25]
De irregulære satellittene er vesentlig mindre objekter med fjernere og mer eksentriske baner. De danner familier med objekter som deler likheter i bane (store halvakse, inklinasjon, eksentrisitet) og sammensetning; det antas at disse i det minste er delvise kollisjonsfamilier som ble til da større (men fremdeles små) foreldrelegemer ble knust av støt fra asteroider fanget av Jupiters gravitasjonsfelt. Disse familiene bærer navnene på sine største medlemmer. Følgende er listet opp nedenfor:[6][L 26][L 27]
Jupiters måner er listet nedenfor etter omløpstid, fra innerst til ytterst. Dette er basert på en gjennomsnittsavstand til Jupiter i økende rekkefølge. Romertallene refererer til rekkefølgen av oppdagelsene for hver enkelt måne. Diameterne til de enkelte måner (målt i km) er noen ganger oppgitt med flere tall (for eksempel «60×40×34»). Dette betyr at legemet ikke er en perfekt sfæroide og at hver av dimensjonene har blitt tilstrekkelig målt. Massen til de enkelte måner er oppgitt i ×1016kg.[9]
Måner som er tilstrekkelig massive til at overflaten har kollapset til en sfæroide er uthevet med fet skrifttype. Dette er de fire galileiske måner, som er sammenlignbare i størrelse med jordens måne. De fire indre månene er mye mindre. De irregulært fangede månene er farget lyse grå ved prograd og mørkegrå ved retrograd bevegelse
^abcd«Gazetteer of Planetary Nomenclature». Working Group for Planetary System Nomenclature (WGPSN) (på engelsk). U.S. Geological Survey. 7. november 2008. Besøkt 19. januar 2012.
^abcd
Sheppard, Scott S. «Jupiter's Known Satellites» (på engelsk). Departament of Terrestrial Magnetism at Carniege Institution for science. Arkivert fra originalen 18. mai 2012. Besøkt 19. januar 2012.
Alibert, Y.; Mousis, O. and Benz, W. (2005). «Modeling the Jovian subnebula I. Thermodynamic conditions and migration of proto-satellites». Astronomy & Astrophysics (på engelsk). 439 (3). Bibcode:2005A&A...439.1205A. arXiv:astro-ph/0505367. doi:10.1051/0004-6361:20052841.CS1-vedlikehold: Flere navn: forfatterliste (link)
Anderson, J.D.; Johnson, T.V.; Shubert, G.; m.fl. (2005). «Amalthea's Density Is Less Than That of Water». Science (på engelsk). 308 (5726). Bibcode:2005Sci...308.1291A. PMID15919987. doi:10.1126/science.1110422.CS1-vedlikehold: Eksplisitt bruk av m.fl. (link)CS1-vedlikehold: Flere navn: forfatterliste (link)
Canup, Robert M.; Ward, William R. (2009). «Origin of Europa and the Galilean Satellites». Europa (på engelsk). University of Arizona Press. Bibcode:2008arXiv0812.4995C.CS1-vedlikehold: Flere navn: forfatterliste (link)
Galilei, Galileo (1989). Oversatt og revidert av Albert Van Helden, red. Sidereus Nuncius (på engelsk). Chicago & London: University of Chicago Press. ISBN0226279030.
Marazzini, C. (2005). «The names of the satellites of Jupiter: from Galileo to Simon Marius». Lettere italian (på italiensk). 57 (3).
Marsden, Brian G. (3. oktober 1975). «Probable New Satellite of Jupiter»(oppdagelsestelegram sendt til IAU). International Astronomical Union Circulars (på engelsk). Cambridge, US: Smithsonian Astrophysical Observatory. 2845.
Marsden, Brian G. (3. oktober 1975). «Satellites of Jupiter». International Astronomical Union Circulars (på engelsk). 2846.
Melotte, P.J. (1908). «Note on the Newly Discovered Eighth Satellite of Jupiter, Photographed at the Royal Observatory, Greenwich». månedhly Notices of the Royal Astronomical Society (på engelsk). 68 (6). Bibcode:1908MNRAS..68..456.
Sheppard, Scott S.; Jewitt, David C.; Porco, Carolyn (2004). «Jupiter's outer satellites and Trojans». I Fran Bagenal, Timothy E. Dowling, William B. McKinnon. Jupiter. The planet, satellites and magnetosphere(PDF) (på engelsk). 1. Cambridge, UK: Cambridge University Press. ISBN0-521-81808-7. Arkivert fra originalen(PDF) 14. juli 2011. Besøkt 14. juni 2007.CS1-vedlikehold: Flere navn: forfatterliste (link)
Van Helden, Albert (mars 1974). «The Telescope in the Seventeenth Century». Isis (på engelsk). The University of Chicago Press on behalf of The History of Science Society. 65 (1). doi:10.1086/351216.
Xi, Zezong Z. (1981). «The Discovery of Jupiter's Satellite Made by Gan De 2000 years Before Galileo». Acta Astrophysica Sinica (på engelsk). 1 (2).