Share to: share facebook share twitter share wa share telegram print page

 

Hyperbool (meetkunde)

De hyperbool als kegelsnede, hier getekend met een strikt verticaal snijvlak

In de meetkunde is een hyperbool een kegelsnede (die dus wordt gevormd door beide helften van een dubbele kegel met een vlak te snijden) die bestaat uit twee krommen. Deze worden de takken van de hyperbool genoemd.

De hyperbool werd ontdekt door de Griekse wiskundige Menaechmus. De benaming 'hyperbool' stamt van Apollonius van Perga en komt uit het Oudgrieks: ὑπερβολή, hyperbolé, overtreffing, overdrijving van ὑπερ, hyper, over, en βάλλειν, bállein, werpen, en verwijst naar de overdrijving, de "overdreven worp" van de snijhoek (of numerieke excentriciteit , zie onder) in de kegelsnede. Met toenemende snijhoek verandert de cirkel () eerst in steeds langwerpiger ellipsen en ten slotte via de parabool () in een hyperbool ().[1]

Definities

Definitie uitgaande van de brandpunten

 Hyperbool


afstandsverschil

Men kan een hyperbool ook beschrijven als alle punten waarvoor het verschil van de afstanden en tot twee gekozen punten, de brandpunten, een constante waarde heeft. Een hyperbool bestaat daarom uit twee takken.

Hoofdas en nevenas

Een hyperbool heeft twee assen: de lijn door de twee brandpunten van de hyperbool heet de hoofdas en de lijn loodrecht daarop midden tussen de brandpunten en ook midden tussen de takken van de hyperbool heet de nevenas.

De assenrechthoek van een hyperbool is de rechthoek waarvan twee zijden raken aan de toppen van de takken van de hyperbool, en de hoekpunten op de asymptoten liggen. De diagonalen liggen op de asymptoten. De lengte van de diagonalen is gelijk aan de afstand tussen de brandpunten van de hyperbool.[2]

Definitie uitgaande van brandpunt en richtcirkel

Als twee cirkels met een gelijke straal zijn gegeven, kleiner dan de afstand van de middelpunten, dan vormen de beide conflictlijnen van de ene cirkel met het middelpunt van de andere cirkel een hyperbool. De middelpunten van de cirkels zijn de brandpunten en de cirkels worden richtcirkels genoemd. De conflictlijn bestaat uit alle punten waarvan de afstand tot de richtcirkel gelijk is aan de afstand tot het middelpunt van de andere richtcirkel.

Definitie uitgaande van brandpunt en richtlijn

Een hyperbool is de meetkundige plaats van de punten in het platte vlak waarbij de verhouding van de afstand tot een zeker punt, het brandpunt, tot de afstand tot een zekere lijn, de richtlijn, constant is. Deze constante verhouding heet de excentriciteit van de hyperbool. Voor een hyperbool is . Er correspondeert met ieder brandpunt een richtlijn. De twee combinaties van een brandpunt en de bijbehorende, dichtbijzijnde richtlijn leveren allebei de complete hyperbool op.

Voor wordt de figuur een parabool en voor een ellips.

De richtlijnen staan loodrecht op de hoofdas, op een afstand van van de nevenas. De afstand van de hyperbool tot de dichtstbijzijnde richtlijn is , dit is voor ongeveer gelijk aan . De afstand van het betreffende brandpunt tot de hyperbool is hieraan dan ook ongeveer gelijk. Als van boven naar 1 nadert en gelijk wordt gehouden, dus naar oneindig nadert, nadert de betreffende hyperbooltak in de buurt van het betreffende brandpunt en de betreffende richtlijn tot een parabool, met als as de hoofdas van de hyperbool. De nevenas en de andere tak verdwijnen, gezien vanuit de betreffende omgeving, naar het oneindige, de parabool heeft maar een as en een tak. De hoek tussen de asymptoten, met het hoekpunt ook steeds verder weg, gaat naar nul.

Vergelijkingen

Middelpuntsvergelijking

De punten op een hyperbool met het centrum in de oorsprong en waarvan de brandpunten in en liggen, voldoen aan:

;

daarin is:

Verderop wordt een afleiding van deze vergelijking gegeven.

De hyperbool snijdt de x-as in de punten en , en voor de afstanden en van een punt op de hyperbool tot de brandpunten geldt:

Anders dan bij een ellips kan groter zijn dan .

Parametervergelijking

Een hyperbool wordt, bij geschikte keuze van het assenstelsel, beschreven door de volgende parametervergelijking:

,

waarbij gebruikgemaakt wordt van de hyperbolische functies (let op de naam!).

Poolvergelijking

Er zijn meer definities in poolcoördinaten mogelijk:

Eigenschappen

De hyperbool met vergelijking

convergeert voor grote waarden van en naar het lijnenpaar:

die de asymptoten van de hyperbool zijn.

Aangetoond kan worden dat de snijpunten van de hyperbool met de x-as altijd binnen het interval zullen liggen. Naarmate de snijpunten meer in de richting van de brandpunten komen, zal de hyperbool sterker gekromd zijn. De verticale lijn door de oorsprong is een speciaal geval, de hyperbool heet ontaard. De twee takken van de hyperbool vallen hier samen, omdat het verschil in afstand precies gelijk is aan 0.

Een speciaal geval treedt op als . De asymptoten zijn dan gelijk aan de diagonalen van het xy-vlak. Als het coördinatenstelsel 45° gedraaid wordt, zijn in het nieuwe stelsel de oude x- en y-as de asymptoten. In dit nieuwe coördinaten-stelsel is de hyperbool dan te beschrijven als de omgekeerde functie

Twee hyperbolen snijden elkaar in maximaal vier punten.

Zijn en de brandpunten van een hyperbool en een punt op de hyperbool, dan heten de lijnen en de brandpuntsvoerstralen van het punt . De bissectrices van de brandpuntsvoerstalen zijn de normaal en de raaklijn aan de hyperbool in punt .

Gelijkzijdige hyperbool

Een hyperbool waarvan de asymptoten elkaar loodrecht snijden heet een gelijkzijdige hyperbool, orthogonale hyperbool of rechthoekige hyperbool. Elke hyperbool die door de punten van een hoogtepuntssysteem gaat is een gelijkzijdige hyperbool.

Neem nu aan dat de asymptoten evenwijdig lopen aan de horizontale en verticale as. is de vergelijking van de ene asymptoot en van de andere. Dan is het snijpunt van de 2 asymptoten. Hiermee kunnen we de hyperbool als volgt afleiden: de verticale asymptoot wordt gevonden als tot nadert en oneindig groot wordt.

Hiermee hebben we dus een hyperbool gevonden met de juiste verticale asymptoot. Hoe krijgen we een formule die ook nog de juiste horizontale asymptoot heeft? Als tot nadert, wordt oneindig groot. wordt oneindig.

Wat gebeurt er met ? Deze blijft altijd , ongeacht welk getal we voor kiezen. Maar wat als we deze samenvoegen met onze eerder gevonden formule?

Als , dan geldt er dat oneindig groot is. De valt te verwaarlozen, omdat deze ontzettend klein is in vergelijking met de oneindig grote . Je krijgt dan . Dit klopt!

Als , dan geldt er dat oneindig groot is, omdat precies 0 is. (Iets delen door 0 nadert oneindig).

Dus, als je 2 asymptoten hebt met snijpunt dan vinden we de volgende formule met de bijbehorende hyperbool:

Afleiden van de middelpuntsvergelijking

Hyperbool


Stelling

Een hyperbool met

voldoet aan de vergelijking:

Dit is de middelpuntsvergelijking van de hyperbool.

Symbolen

Waar eerst en werden gebruikt, worden hier en gebruikt.

symbool omschrijving
een willekeurige hyperbool in het platte vlak
, de brandpunten van



• een orthogonaal assenstelsel
• met als oorsprong het midden van het lijnstuk
• de -as wijst van naar
brandpuntsafstand van , per definitie de afstand tussen en
een willekeurig punt van
de -coördinaat van
de -coördinaat van
de lengte van de voerstraal van vanuit
de lengte van de voerstraal van vanuit
de lengte van de hoofdas van
de lengte van de nevenas van

Afleiden r1 en r2 als lineaire functies van x

stap maak gebruik van er geldt dan
definitie hyperbool
stelling van Pythagoras
stelling van Pythagoras
merkwaardig product
()
()

s.8 en s.9 gelden samen.

Afleiden kwadratisch verband tussen x en y

stap maak gebruik van er geldt dan
• merkwaardig product
• merkwaardig product
betrekking tussen brandpuntsafstand, hoofdas en nevenas

Nu is aangetoond dat als een punt op de hyperbool ligt, de coördinaten van voldoen aan de vergelijking .

Omgekeerd kan men aantonen dat als de coördinaten van een willekeurig punt voldoen aan die vergelijking, op die hyperbool ligt.

Dus is de vergelijking van een hyperbool.

Referenties

  1. I. N. Bronstein, KA Semendjajew, Günter Grosche, Eberhard Zeidler: Teubner-Taschenbuch der Mathematik, Teubner, Stuttgart 1996, ISBN 3-8154-2001-6, p.24
  2. 2) Kegelsneden (in basisvorm) . Pdf-document. Gearchiveerd op 12 december 2022.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9