Share to: share facebook share twitter share wa share telegram print page

 

단위원

단위원(單位圓,unit circle)은 반지름이 1인 원이다. 특별히 해석기하학에서는 원점 을 중심으로 하는 반지름이 1인 원을 말한다. 즉, 원점으로부터 거리가 1 인 점의 자취이다.

많은 경우 단위원은 으로 표시한다. 이것은 일반적인 차원 구면(sphere) 개념 중 의 경우를 뜻한다.

단위원 위의 임의의 한 점의 삼각매개화

단위원 위의 임의의 점 극좌표를 이용하여 나타내는 경우, (: 점 와 원점을 이은 반직선 축이 이루는 각, )으로 나타낼 수 있다. 또한 이 점을 직교좌표를 이용하여 표현하는 경우, 이 점의 좌표는 로 나타낼 수 있다.

에 의해 만들어지는 직각삼각형

에 의해 만들어지는 직각삼각형에 대해, 삼각함수 중 사인 함수와 코사인 함수의 정의를 적용하면 으로 나타낼 수 있다.

단위원의 경우, 원점으로부터의 거리 이므로 로 정리할 수 있다.

이와 같은 방식으로 삼각함수의 정의를 이용하여 단위원 위의 모든 점을 '원점으로부터의 거리()'와 '축의 양의 방향과 이루는 각도()'로 나타내는 것을 '단위원의 삼각매개화'라 한다.

단위원 위의 임의의 한 점의 유리매개화

단위원 위의 임의의 한 점 를 유리매개화 하기 위해, 기울기가 (: 임의의 실수)이고 단위원 위의 한 점인 을 지나는 직선 을 생각한다. 이 경우, 직선 은 단위원과 2개의 교점을 갖는다. 하나는 , 다른 하나는 유리매개화를 하려고 하는 임의의 점 가 된다. 따라서 단위원의 원의 방정식과 직선 의 방정식을 연립하여 점 의 좌표를 찾아낸다면, 임의의 실수 에 대해 원 위의 모든 점(단, 은 제외)을 유리매개화 할 수 있다.

단위원의 원의 방정식:
직선의 직선의 방정식:

직선의 방정식을 원의 방정식에 대입하여 변수 를 소거하면 에 대한 이차방정식을 얻을 수 있다.

얻어낸 의 이차방정식을 근의 공식을 이용하여 근을 찾아내면 그것이 점 좌표가 된다.

또는

따라서, 점 좌표는 이다. 좌표를 직선 의 방정식에 대입하여 좌표도 찾아, 점 의 좌표를 완성시키면 다음과 같다.

단위원과 직선의 교점: .

이와 같은 방식으로 원과 두 개의 교점을 갖는 직선을 이용하여 단위원 위의 모든 점의 좌표(단, 제외, 로 발산하는 경우 점 로 수렴한다)를 임의의 실수 에 대한 식으로 나타내는 것을 '단위원의 유리매개화'라고 한다.

참고) 단위원 위의 임의의 한 점의 유리매개화를 통해 단위원과 임의의 곡선 의 교점의 개수를 구할 수 있다.

예를 들어, 라 하자. 단, 는 단위원 는 임의의 곡선이며 의 차수는 이라 하자.

결론부터 말하자면, 의 교점의 개수는 많아야 개 이하이다.

우선, 두 곡선 의 교점 는 단위원의 유리매개화를 통해 을 제외한 모든 점에서 아래와 같이 유리매개화할 수 있다.

이 때, 로 놓을 수 있고 이다.

여기서 을 만족하는 의 개수가 교점의 개수이다.

따라서 우리가 알고 싶은 것은 의 차수(degree)이므로, 에 대해 정리한 각 항의 일반적인 형태는 다음과 같다.

ijij

(단, ij는 각 항의 계수이며, i+j<n이다.)

그리고 위 식 우변에 i+j을 곱하면,

ij

그러므로 차수()를 생각하면 다음과 같다.

따라서 의 차수가 보다 작으므로 단위원과 임의의 곡선 의 교점의 개수는 많아야 개 이하이다.

복소평면의 단위원

복소평면상의 단위원은 절댓값이 1 인 복소수의 자취

{zC | |z| = 1} = {exp(iθ) | 0 ≤ θ < 2π}

가 된다 (exp는 자연대수의 밑인 e 을 밑으로 하는 복소변수 지수함수). 이 집합은 복소수의 통상의 곱에 관해서 닫혀 있고 (群, group)을 이루어 원주군 (circle group)으로 불리기도 한다. 이것은 또 1차원의 유니타리 군으로 불리는 리 군이며 U(1)라고 표시한다.

같이 보기

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9