^ abcde齋藤雅典・小川真 (2020). “地球の緑を支える菌根共生 –菌と根の奇跡の出会い”. In 齋藤雅典. 菌根の世界: 菌と植物のきってもきれない関係. 築地書館. pp. 9–22. ISBN978-4806716068
^ abcdefL. テイツ, E. ザイガー, I.M. モーラー & A. マーフィー (編) (2017). “菌根菌は根の養分吸収を促進する”. 植物生理学・発生学 原著第6版. 講談社. pp. 137–141. ISBN978-4061538962
^ abc小八重善裕 (2017). “菌根の分子生物学の最新情報~ The 2nd International Molecular Mycorrhiza Meeting (IMMM2015) に参加して~”. 日本土壌肥料学雑誌87 (1): 75-77. doi:10.20710/dojo.87.1_75.
^Figueiredo, A. F., Boy, J. & Guggenberger, G. (2021). “Common mycorrhizae network: a review of the theories and mechanisms behind underground interactions”. Frontiers in Fungal Biology2: 48. doi:10.3389/ffunb.2021.735299.
^ abcdefghijkRedecker, D. & Schüssler, A. (2014). “Glomeromycota”. In McLaughlin, D. J. & Spatafora, J. W.. THE MYCOTA, volume 7A. Systematics and Evolution Part A. Springer. pp. 251-270. ISBN978-3-642-55317-2
^ abc大和政秀 (2020). “菌類を食べる植物 –菌従属栄養植物の菌根共生”. In 齋藤雅典. 菌根の世界: 菌と植物のきってもきれない関係. 築地書館. pp. 177–212. ISBN978-4806716068
^Peterson, R. L. & Massicotte, H. B. (2004). “Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces”. Canadian Journal of Botany82 (8): 1074-1088.
^Jakobsen, I., Abbott, L. K. & Robson, A. D.. “External hyphae of vesicular‐arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots”. New Phytologist120 (3): 371-380. doi:10.1111/j.1469-8137.1992.tb01077.x.
^ abHodge, A. & Storer, K. (2015). “Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems”. Plant Soil386: 1–19. doi:10.1007/s11104-014-2162-1.
^ abHoysted, G. A., Kowal, J., Jacob, A., Rimington, W. R., Duckett, J. G., Pressel, S., ... & Bidartondo, M. I. (2018). “A mycorrhizal revolution”. Current Opinion in Plant Biology44: 1-6. doi:10.1016/j.pbi.2017.12.004.
^Smith, S. E. & Smith, F. A. (2011). “Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales”. Annual Review of Plant Biology62: 227-250. doi:10.1146/annurev-arplant-042110-103846.
^ abcSchüßler, A. & Walker, C. (2011). “7 Evolution of the ‘Plant-Symbiotic’ Fungal Phylum, Glomeromycota”. In Pöggeler, S. & Wöstemeyer, J.. Evolution of Fungi and Fungal-Like Organisms. THE MYCOTA, vol 14. Springer. pp. 163–185. doi:10.1007/978-3-642-19974-5_7
^ abc齋藤雅典 (2013). “1.7.3 グロムス菌門”. In 日本菌学会 (編). 菌類の事典. 朝倉書店. pp. 23–25. ISBN978-4254171471
^Brundrett, M. C. & Tedersoo, L. (2018). “Evolutionary history of mycorrhizal symbioses and global host plant diversity”. New Phytologist220 (4): 1108-1115. doi:10.1111/nph.14976.
^ abcdeWang, B. & Qiu, Y. L. (2006). “Phylogenetic distribution and evolution of mycorrhizas in land plants”. Mycorrhiza16 (5): 299-363. doi:10.1007/s00572-005-0033-6.
^ abcRimington, W. R., Duckett, J. G., Field, K. J., Bidartondo, M. I. & Pressel, S. (2020). “The distribution and evolution of fungal symbioses in ancient lineages of land plants”. Mycorrhiza30 (1): 23-49. doi:10.1007/s00572-020-00938-y.
^ abcd辻田有紀 (2020). “菌根共生の原点 - コケ植物とシダ植物の菌根共生”. In 齋藤雅典. 菌根の世界: 菌と植物のきってもきれない関係. 築地書館. pp. 163–176. ISBN978-4806716068
^Wang, B., Yeun, L. H., Xue, J. Y., Liu, Y., Ané, J. M. & Qiu, Y. L. (2010). “Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants”. New Phytologist186 (2): 514-525. doi:10.1111/j.1469-8137.2009.03137.x.
^Delaux, P. M., Radhakrishnan, G. V., Jayaraman, D., Cheema, J., Malbreil, M., Volkening, J. D., ... & Ané, J. M. (2015). “Algal ancestor of land plants was preadapted for symbiosis”. Proceedings of the National Academy of Sciences112 (43): 13390-13395. doi:10.1073/pnas.151542611.
^Taylor, T. N., Remy, W., Hass, H. & Kerp, H. (1995). “Fossil arbuscular mycorrhizae from the Early Devonian”. Mycologia87 (4): 560-573. doi:10.2307/3760776.
^Suetsugu, K., Taketomi, S., Tanabe, A. S., Haraguchi, T. F., Tayasu, I. & Toju, H. (2020). “Isotopic and molecular data support mixotrophy in Ophioglossum at the sporophytic stage”. New Phytologist228 (2): 415-419. doi:10.1111/nph.16534.
^ abOrchard, S., Hilton, S., Bending, G. D., Dickie, I. A., Standish, R. J., Gleeson, D. B., ... & Ryan, M. H. (2017). “Fine endophytes (Glomus tenue) are related to Mucoromycotina, not Glomeromycota”. New Phytologist213 (2): 481-486. doi:10.1111/nph.14268.
^Orchard, S., Standish, R. J., Dickie, I. A., Renton, M., Walker, C., Moot, D. & Ryan, M. H. (2017). “Fine root endophytes under scrutiny: a review of the literature on arbuscule-producing fungi recently suggested to belong to the Mucoromycotina”. Mycorrhiza27 (7): 619-638. doi:10.1007/s00572-017-0782-z.
^Walker, C., Gollotte, A. & Redecker, D. (2018). “A new genus, Planticonsortium (Mucoromycotina), and new combination (P. tenue), for the fine root endophyte, Glomus tenue (basionym Rhizophagus tenuis)”. Mycorrhiza28 (3): 213-219.
^Desirò, A., Duckett, J. G., Pressel, S., Villarreal, J. C. & Bidartondo, M. I. (2013). “Fungal symbioses in hornworts: a chequered history”. Proceedings of the Royal Society B: Biological Sciences280: 20130207. doi:10.1098/rspb.2013.0207.
^Yamamoto, K., Endo, N., Degawa, Y., Fukuda, M. & Yamada, A. (2017). “First detection of Endogone ectomycorrhizas in natural oak forests”. Mycorrhiza27 (3): 295-301. doi:10.1007/s00572-016-0740-1.