Share to: share facebook share twitter share wa share telegram print page

 

Topología cuántica

La Topología Cuántica es un subcampo de Topología/Geometría/Teoría de Nudos donde existen invariantes cuánticos (por ejemplo el Invariante de Kontsevich) que son usados para determinar si arreglos simples (deformaciones, teoría de la deformación, es decir nudos) en las variedades son iguales. La Topología Cuántica comprende temas en Teoría Algebraica, Analítica, Categórica, Combinatoria, Geométrica y Física Matemática.[1]

Desde la perspectiva física, la topología cuántica trata con la teoría cuántica en general como un espacio funcional cuántico, espacio-tiempo, energía y momento formando una variedad conexa en el nivel cuántico. La teoría cuántica general deriva de la topología del espacio cuántico.

Historia

La topología cuántica moderna se originó con V. Jones, E. Witten, N. Reshetikhin y V. Turaev entre 1980 y 1990. El mayor trabajo hecho por los topólogos cuánticos es mostrar que puede usarse como una herramienta para los problemas topológicos clásicos. Las aplicaciones son en teorías de nudos y topología de tri variedades. La prueba reciente de la conjetura de metrización para variedades en tres dimensiones (Hipótesis de Poincaré) por el matemático G. Perelmán respalda esta idea.

Topodinámica cuántica

La topodinámica cuántica se deriva de la topología cuántica, y trata con el conjunto que comprende la estructura fundamental de la topología, la estructura de grupo y lógica del espacio cuántico. La estructura básica está fundamentada en la representación de Fourier del espacio funcional.[2]

Topología diferencial en el espacio cuántico

La topología diferencial en el espacio cuántico trata con el método del análisis apropiado para el espacio cuántico, basado en la representación de Fourier del espacio funcional.[3]​ La mecánica cuántica y la teoría cuántica de campos requieren el lenguaje del espacio funcional y la topología diferencial. Las transformaciones continuas tales como las de Poincare-Lorentz, de norma, del grupo de renormalización, son necesarias para completar las funciones y sus espacios de funciones. El concepto de espacio funcional es central en el entendimiento de las transformaciones y la naturaleza física del espacio. Las funciones y la geometría aisladas no más representaciones de la realidad física.[4]

Teoría de norma de la gravitación

La teoría de norma de la gravitación tiene que ver con la gravitación como un fenómeno cuántico topológico al introducir el efecto de la gravitación dentro del espacio cuántico a través del ángulo de fase el cual muestra su unidad con el resto de las interacciones de norma y también muestra que la variedad es compacta.[4]

Véase también

Referencias

  1. Louis H. Kauffman; Randy A. Baadhio (1993). Quantum Topology (Series on Knots & Everything). World Scientific Pub Co Inc. ISBN 981022575X. 
  2. Ahmed, Diaa A. «Quantum Topodynamics». Quantum Field Theory. Consultado el 3 de diciembre de 2012. 
  3. «Copia archivada». Archivado desde el original el 7 de agosto de 2009. Consultado el 14 de agosto de 2009. 
  4. a b Ahmed, Diaa A. (3 de julio de 2001). «Quantum Topology, Quantum Topodynamics, Differential Topology in Quantum Space, Gauge Theory of Gravitation». arXiv.org e-Print archive (en inglés). Consultado el 3 de diciembre de 2012. 

Bibliografía

  • Ohtsuki, Tomotada. (2002). Quantum invariants : a study of knots, 3-manifolds, and their sets. Singapore ; River Edge, NJ: World Scientific. ISBN 981-02-4675-7. 

Enlaces externos

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9