Share to: share facebook share twitter share wa share telegram print page

 

Teorema de Torricelli

Teorema de Torricelli. En un recipiente abierto, la velocidad de salida del líquido por la salida es igual a la velocidad del objeto que se deja caer desde una altura h después de haber caído esta distancia h.

El teorema de Torricelli o principio de Torricelli es la aplicación del principio de Bernoulli y estudia el flujo de un líquido contenido en un recipiente, a través de un pequeño orificio, bajo la acción de la gravedad.

La velocidad de un líquido en una vasija abierta, por un orificio, es la que tendría un cuerpo cualquiera, cayendo libremente en el vacío desde el nivel del líquido hasta el centro de gravedad del orificio.

Matemáticamente la ecuación de Bernoulli se describe como:

donde:

  • es la velocidad teórica del líquido a la salida del orificio
  • es la velocidad de aproximación o inicial.
  • es la distancia desde la superficie del líquido al centro del orificio.
  • es la aceleración de la gravedad

Para velocidades de aproximación bajas, la mayoría de los casos, la expresión anterior se transforma en:

donde:

  • es la velocidad real media del líquido a la salida del orificio
  • es el cociente de velocidad. Para cálculos preliminares en aberturas de pared delgada puede admitirse 0,95 en el caso más desfavorable.

tomando =1

Experimentalmente se ha comprobado que la velocidad media de un chorro de un orificio de pared delgada, es inversamente proporcional a la raíz cúbica de lo que dictamina que la fórmula ideal, debido a la viscosidad del fluido y otros factores tales como la tensión superficial, de ahí el significado de este coeficiente de velocidad.

Caudal descargado

El caudal o volumen del fluido que pasa por el orificio en un tiempo, , puede calcularse como el producto de , el área real de la sección contraída, por , la velocidad real media del fluido que pasa por esa sección, y por consiguiente se puede escribir la siguiente ecuación:

en donde

  • representa la descarga ideal que habría ocurrido si no estuvieran presentes la fricción y la contracción.
  • es el coeficiente de contracción de la vena fluida a la salida del orificio. Su significado radica en el cambio brusco de sentido que deben realizar las partículas de la pared interior próximas al orificio. Es la relación entre el área contraída y la del orificio . Suele estar en torno a 0,65.
  • es el coeficiente por el cual el valor ideal de descarga es multiplicado para obtener el valor real, y se conoce como coeficiente de descarga. Numéricamente es igual al producto de los otros dos coeficientes.

El coeficiente de descarga variará con la carga y el diámetro del orificio. Sus valores para el agua han sido determinados y tabulados por numerosos experimentadores. De forma orientativa se pueden tomar valores sobre 0,6. Así se puede apreciar la importancia del uso de estos coeficientes para obtener unos resultados de caudal aceptables.

Véase también

Enlaces externos

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9