Share to: share facebook share twitter share wa share telegram print page

 

Tensor tensión

Componentes del tensor tensión en un punto P de un sólido deformable.

En mecánica de medios continuos, el tensor tensión, también llamado tensor de tensiones o tensor de esfuerzos es el tensor que da cuenta de la distribución de tensiones y esfuerzos internos en el medio continuo.

Tipos de tensor tensión

Tensor tensión de Cauchy

Representación gráfica de las componentes del tensor tensión en una base ortogonal.

El teorema de Cauchy sobre las tensiones de un cuerpo, establece que dada una distribución de tensiones internas sobre la geometría de un medio continuo deformado, que satisfaga las condiciones del principio de Cauchy existe un campo tensorial T simétrico definido sobre la geometría deformada con las siguientes propiedades:

  1. .
  2. .
  3. .


La tercera propiedad significa que este tensor vendrá dado sobre las coordenadas especificadas por una matriz simétrica. Cabe señalar que en un problema mecánico a priori es difícil conocer el tensor tensión de Cauchy ya que este está definido sobre la geometría del cuerpo una vez deformado, y ésta no es conocida de antemano. Por tanto previamente es necesario encontrar la forma deformada para conocer exactamente el tensor de Cauchy. Sin embargo, cuando las deformaciones son pequeñas, en ingeniería y aplicaciones prácticas se emplea este tensor aunque definido sobre las coordenadas del cuerpo sin deformar (lo cual no conduce a errores de cálculo excesivo si todas las deformaciones máximas son inferiores a 0,01).

Fijado un sistema de referencia ortogonal, el tensor tensión de Cauchy viene dado por una matriz simétrica, cuyas componentes son:


La tercera forma es la forma común de llamar a las componentes del tensor tensión en ingeniería.

Primer tensor tensión de Piola-Kirchhoff

Los tensores de Piola-Kirchhoff TR se introducen para evitar la dificultad de tener que trabajar con un tensor definido sobre la geometría ya deformada (que normalmente no es conocida de antemano). La relación entre ambos tensores viene dada por:

Donde F es el tensor gradiente de deformación. Este tensor sin embargo, tiene el problema de que no es simétrico (ver segundo tensor tensión de Piola-Kirchhoff).

Segundo tensor tensión de Piola-Kirchhoff

Este tensor se introduce para lograr un tensor definido sobre la geometría previa a la deformación y que además sea simétrico, a diferencia del primer tensor de Piola-Kirchhoff que no tiene por qué ser simétrico. El segundo tensor tensión de Piola-Kirchhoff viene dado por:

Véase también

Referencias

Bibliografía

  • R. J. Atkin & N. Fox: An Introduction to the Theory of Elasticity, ed. Dover, ISBN 0-486-44241-1, 1980.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9