Share to: share facebook share twitter share wa share telegram print page

 

Relación n-aria

En matemáticas y lógica, una relación n-aria R (o a menudo comúnmente relación) es una generalización de la relación binaria, donde R está formada por una tupla de n términos:

Un predicado n-ario: es una función a valores de verdad de n variables.

Debido a que una relación como la anterior define de manera única un predicado n-ario que vale para si y sólo si está en , y viceversa, la relación y el predicado se denotan a menudo con el mismo símbolo. Así pues, por ejemplo, las dos proposiciones siguientes se consideran como equivalentes:

Ejemplo

La siguiente relación, definida sobre el conjunto N de los números naturales, es n-aria, pues posee n términos:

La relación dice que cada uno de los términos es mayor que el anterior. El valor de n es un parámetro fijo, que se puede explicitar, o bien dejar como genérico, para describir un caso general.

Subtipos

Las relaciones se clasifican según el número de conjuntos en el producto cartesiano; en otras palabras, el número de términos en la expresión:

Las relaciones con más de 4 términos generalmente se llaman n-arias; por ejemplo "una relación 5-aria".

Véase también

Referencias

Bibliografía

  • Bourbaki, N. (1994) Elements of the History of Mathematics, John Meldrum, trans. Springer-Verlag.
  • Halmos, P.R. (1960) Naive Set Theory. Princeton NJ: D. Van Nostrand Company.
  • Lawvere, F. W., and R. Rosebrugh (2003) Sets for Mathematics, Cambridge Univ. Press.
  • Suppes, Patrick (1960/1972) Axiomatic Set Theory. Dover Publications.
  • Tarski, A. (1956/1983) Logic, Semantics, Metamathematics, Papers from 1923 to 1938, J.H. Woodger, trans. 1st edition, Oxford University Press. 2nd edition, J. Corcoran, ed. Indianapolis IN: Hackett Publishing.
  • Ulam, S.M. (1990) Analogies Between Analogies: The Mathematical Reports of S.M. Ulam and His Los Alamos Collaborators in A.R. Bednarek and Françoise Ulam, eds., University of California Press.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9