Share to: share facebook share twitter share wa share telegram print page

 

Recursión primitiva

En teoría de la computabilidad, la recursión primitiva permite definir una clase de funciones que forman un importante paso en la formalización de la noción de computabilidad, la clase de funciones recursivas primitivas. Se definen usando como principales operaciones la recursión y composición de funciones y forman un subconjunto estricto de las funciones recursivas, que son precisamente las funciones computables. Las funciones recursivas se definen agregándole a la recursión primitiva el operador de búsqueda no acotada que permite definir funciones parciales.

Muchas de las funciones normalmente estudiadas en teoría de los números, y las aproximaciones a las funciones de valor real utilizan la recursión primitiva. Como ejemplo de ellas se tiene la suma, la división, el factorial, el enésimo primo, etc. De hecho, no es fácil definir una función que sea recursiva pero que no se pueda definir con recursión primitiva.

Definición

La variable o argumento de una función recursiva primitiva es un número natural o una n-tupla de números naturales (i1, i2,..., in), mientras que el resultado o valor de la función es un número natural. Una función recursiva primitiva es n-aria si toma como argumento o variable n-uplas de números naturales. El conjunto de las funciones primitivas recursivas se define según las siguientes reglas:

  1. Para todo k >= 0, la función cero k-aria definida como zerok(n1, n2, ..., nk) = 0, para todo número natural n1, n2, ..., nk, es primitiva recursiva.
  2. La función sucesor S, de aridad 1, que produce el siguiente entero según los axiomas de Peano, es primitiva recursiva.
  3. Las funciones de proyección Pin, de aridad n que producen como resultado su argumento de la posición i son primitivas recursivas.
  4. Composición: Dadas f, una función primitiva recursiva de aridad k, y g1,...,gk, funciones primitivas recursivas de aridad n, la composición de f con g1,...,gk, es decir, la función h(x1,...,xn) = f(g1(x1,...,xn),...,gk(x1,...,xn)), es primitiva recursiva.
  5. Recursión primitiva: Dadas f, una función primitiva recursiva de aridad k, y g, una función primitiva recursiva de aridad k+2, la función h de aridad k+1 definida como h(0,x1,...,xk) = f(x1,...,xk) y h(S(n), x1,...,xk) = g(h(n, x1,...,xk), n, x1,...,xk), es primitiva recursiva.

Se puede notar que las funciones de proyección permiten contrarrestar la rigidez impuesta por la paridad de las funciones en la definición anterior, dado que en la composición se puede pasar cualquier subconjunto de los argumentos.

Una función es primitiva recursiva si es la función constante cero, la función sucesor, una proyección o si se define a partir de funciones primitivas recursivas utilizando únicamente composición y recursión primitiva.

Ejemplo

Suma de enteros

Intuitivamente, se esperaría que la suma se comportase de la forma siguiente:

suma(0,x)=x
suma(n+1,x)=suma(n, x)+1

llevada esta función al esquema de las funciones primitivas queda así:

suma(0,x)=P1¹(x)
suma(S(n), x)=S(P1³(suma(n, x), n, x))

(donde P1³ es la función que recibe tres argumentos y devuelve el primero de ellos)

Se puede ver que P1¹ es la función identidad; se incluye su llamada para conformarse estrictamente al esquema de la recursión primitiva (función f del esquema). La composición de S con P1³, en el segundo caso también corresponde al esquema dado anteriormente (función g del esquema).

Limitaciones

Si bien la recursión primitiva parece poder expresar cualquier operación, en realidad solamente cubre un subconjunto estricto de las funciones computables. Esto se verifica con una variante del argumento de diagonalización de Cantor. La prueba se puede esquematizar como sigue:

Las funciones primitivas recursivas pueden ser ordenadas estrictamente asignándole a cada una de ellas un número. Este número es único para cada definición de función, si bien dos definiciones equivalentes de la misma función podrían tener diferente número asociado. El número asociado a cada función es calculable en el sentido de que puede ser definido mediante un mecanismo de cómputo como una función recursiva o una máquina de Turing.

Se construye ahora una matriz donde las filas son las funciones primitivas recursivas de un solo argumento en orden según el número asociado y las columnas son los naturales. El valor de cada casilla es el resultado de la función de esa fila para el valor entero de esa columna.

Se define ahora la función g(x) = S(n) donde n es el valor de la casilla de la fila y columna x. Cualquiera sea el valor de x, el valor de g(x) será distinto al de la función de la fila x al menos para el entero x. Por la construcción anterior, la función es computable, pero no recursiva primitiva, dado que es diferente a toda función primitiva para al menos un argumento entero. En conclusión, deben existir funciones computables que no son primitivas recursivas.

Este mismo argumento se puede utilizar para cualquier conjunto de funciones totales computables, por lo que cualquier enumeración (que pueda llevarse a cabo mediante un mecanismo de cómputo) de funciones computables totales es necesariamente incompleta. En cambio, las funciones parciales computables sí pueden ser enumeradas de forma completa, por ejemplo enumerando el «programa» de su correspondiente máquina de Turing.

Un ejemplo notable de función recursiva que no es primitiva recursiva es la función de Ackermann.

Referencias

  • Harry R. Lewis, Christos H. Papadimitriou, Elements of the theory of computation, Prentice-Hall, ISBN 0-13-262478-8
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9