Share to: share facebook share twitter share wa share telegram print page

 

Punto medio

Punto medio de un segmento, hallado mediante regla y compás: el punto medio es la intersección de la recta roja con el segmento en negro.

Punto medio en matemática, es el punto que se encuentra a la misma distancia de otros dos puntos cualquiera o extremos de un segmento.

Más generalmente punto equidistante en matemática, es el punto que se encuentra a la misma distancia de dos elementos geométricos, ya sean puntos, segmentos, rectas, etc.

Si es un segmento, el punto medio es el que lo divide en dos partes iguales. En ese caso, el punto medio es único y equidista de los extremos del segmento. Por cumplir esta última condición, pertenece a la mediatriz del segmento.

Construcción geométrica

Se hace buscando puntos del eje de simetría de los elementos dados en cada caso. Si no son simétricos se hacen aproximaciones mediante arcos o paralelas para hallar los puntos medios o equidistantes según el caso. por ejemplo cuando sumas 3 x 93 es lo mismo que un punto medio porque si haces una línea o raya y pones un circulito en medio o una bolita en medio y eso es un punto medio

Coordenadas cartesianas

En el plano cartesiano

Dado un segmento, cuyos extremos tienen por coordenadas:

y

El punto medio, , tendrá por coordenadas:

En el espacio cartesiano

Sean los extremos con coordenadas

y

El punto medio tiene como coordenadas:

[1]

En otros casos

En el triángulo
  • La mediana une el punto medio de un lado con el vértice del lado opuesto.
  • Si se unen los tres puntos medios de un triángulo se construye un triángulo semejante al original, cuya área es un cuarto del área primitiva.
  • En el punto medio de cada lado de un triángulo se levanta la mediatriz respectiva de dicho lado.
  • El punto medio de la hipotenusa de un triángulo rectángulo es el centro de la circunferencia circunscrita a dicho triángulo.
En las cónicas
  • En la elipse: el centro es el punto medio de su eje mayor, como también del segmento que une los focos.
  • En la hipérbola: el centro es el punto medio del segmento que une los focos.
  • El centro de una circunferencia es el punto medio de cualquier diámetro.
En paralelogramos
  • El punto medio de una diagonal de un rectángulo es centro de simetría
  • El punto medio de cualquier diagonal de un rombo es el vértice del ángulo recto de los cuatro triángulos rectángulos definidos por las dos diagonales.
  • El punto medio de la diagonal de un cuadrado es centro de simetría.

Véase también

Notas y referencias

  1. Geometría analítica de Lehmann
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9