Share to: share facebook share twitter share wa share telegram print page

 

Punto de Steiner (geometría computational)

Ejemplo de puntos de Steiner (aquellos rojos) añadidos a una triangulación para mejorar la calidad de los triángulos.

En geometría computacional, un punto de Steiner es un punto que no es parte del argumento en un problema de optimización geométrica, pero que es añadido durante la solución del problema, para crear una mejor solución que pudiera ser posible a partir de los puntos originales por sí solos.

El nombre de estos puntos proviene del problema de árbol de Steiner, nombrado en referencia a Jakob Steiner, en el que el objetivo es conectar los puntos de la instancia del problema por una red de longitud total mínima. Si los puntos de la instancia sólo son utilizados como vértices de las aristas de la red, entonces la red más corta es su árbol recubridor mínimo. Aun así, a continuación se pueden obtener redes más cortas añadiendo puntos de Steiner, y usando tanto los puntos nuevos como los puntos de la instancia como vértices de las aristas.[1]

Otro problema que utiliza los puntos de Steiner es la triangulación de Steiner. El objetivo es particionar una instancia (que puede ser un conjuntos o un polígono) en triángulos, algunos de los cuales comparten aristas. Tanto las colecciones de puntos en una instancia como los puntos de Steiner pueden ser utilizados como vértices de los triángulos.[2]

Véase también

Referencias

  1. Hwang, F. K.; Richards, D. S.; Winter, P. (1992), The Steiner Tree Problem, Annals of Discrete Mathematics 53, Elsevier, ISBN 0-444-89098-X ..
  2. de Berg, Mark; van Kreveld, Marc; Overmars, Mark; Schwarzkopf, Otfried (2000), Computational Geometry: Algorithms and Applications (2nd edición), Springer, p. 293, ISBN 9783540656203 .
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9