Share to: share facebook share twitter share wa share telegram print page

 

Problema del momento de Hausdorff

El problema del momento de Hausdorff es una cuestión matemática que lleva el nombre de Felix Hausdorff. Establece las condiciones necesarias y suficientes para que una sucesión dada (m0, m1, m2, ...) sea la secuencia de momentos[1]

de alguna medida de Borel μ soportada en el intervalo unidad cerrado [0, 1]. En el caso m0= 1, esto equivale a la existencia de una variable aleatoria X soportada en [0, 1], tal que E[Xn]= mn.

La diferencia esencial entre este y otros problemas de momentos conocidos es que el problema de Hausdorff considera un intervalo acotado; mientras que en el problema del momento de Stieltjes se considera una semirrecta [0, ∞), y en el problema del momento de Hamburger se considera la recta real completa (−∞, ∞). Los problemas de momentos de Stieltjes y los problemas de momentos de Hamburger, si son solucionables, pueden tener infinitas soluciones (problemas de momento indeterminado), mientras que un problema de momento de Hausdorff siempre tiene una solución única si es solucionable (problema de momento determinado). En el caso del problema de momentos indeterminados, existen infinitas medidas correspondientes a los mismos momentos prescritos y constan de un conjunto convexo. El conjunto de polinomios puede ser denso o no en los espacios de Hilbert asociados si el problema de momentos es indeterminado, y depende de si la medida es extrema o no. Pero en el caso del problema del momento determinado, el conjunto de polinomios es denso en el espacio de Hilbert asociado.

Secuencias completamente monótonas

En 1921, Hausdorff demostró que (m0, m1, m2, ...) es una secuencia de momentos si y solo si la secuencia es completamente monótona, es decir, sus diferentes secuencias satisfacen la ecuación

para todos los n, k ≥ 0. Aquí, Δ es la relación de recurrencia dada por

La necesidad de esta condición se ve fácilmente por la identidad

que es no negativa, ya que es la integral de una función no negativa, como se muestra en el siguiente ejemplo:

Véase también

Referencias

  1. Annie A.M. Cuyt, Vigdis Petersen, Brigitte Verdonk, Haakon Waadeland, William B. Jones (2008). Handbook of Continued Fractions for Special Functions. Springer Science & Business Media. pp. 77 de 431. ISBN 9781402069499. Consultado el 25 de septiembre de 2023. 

Bibliografía

  • Hausdorff, F. "Summationsmethoden und Momentfolgen. I." Mathematische Zeitschrift 9, 74–109, 1921.
  • Hausdorff, F. "Summationsmethoden und Momentfolgen. II." Mathematische Zeitschrift 9, 280–299, 1921.
  • Feller, W. "An Introduction to Probability Theory and Its Applications", volume II, John Wiley & Sons, 1971.
  • Shohat, J.A.; Tamarkin, J. D. The Problem of Moments, American mathematical society, New York, 1943.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9