Share to: share facebook share twitter share wa share telegram print page

 

Paradoja sorites

El cambio en tamaño entre dos montones "grandes" consecutivos (izquierda) es dos veces mayor que el cambio entre dos montones "pequeños" consecutivos (derecha), y aun así se ve menos significativo.

La paradoja del montón (o la paradoja sorites, sorites (σωρείτης) en griego significa «pila», «montón») es una paradoja que aparece cuando la gente utiliza el «sentido común» sobre conceptos vagos, preguntándose por ejemplo: ¿En qué momento un montón de arena deja de serlo cuando se van quitando granos?

Más específicamente, la paradoja se produce porque mientras el sentido común sugiere que los montones de arena tienen las siguientes propiedades, estas propiedades son inconsistentes:

  1. Dos o tres granos de arena no son un montón.
  2. Un millón de granos de arena juntos son un montón.
  3. Si n granos de arena no forman un montón, tampoco lo serán (n+1) granos.
  4. Si n granos de arena son un montón, también lo serán (n−1) granos.

Si se aplica la inducción matemática, se comprueba que la tercera propiedad junto con la primera implican que un millón de granos de arena no forman un montón, contradiciendo la segunda propiedad. De modo análogo, combinando la segunda y la cuarta propiedad se demuestra que dos o tres granos son un montón, contradiciendo la primera propiedad.

La contradicción se descubre examinando las propiedades anteriores. Las dos últimas expresan claramente la idea de que no hay una separación clara entre lo que es un montón y lo que no es un montón. Sin embargo, las cuatro juntas implican que un conjunto de granos de arena puede clasificarse sin ningún problema como «montón» o «no montón».

Lo que muestra la paradoja es que estas dos ideas son contradictorias. Esto es, que una persona no puede afirmar, cuando está clasificando X:

  1. Que no hay un límite claro que separa las X que son Y de las X que no son Y.
  2. Que cada una de las X se puede clasificar como Y o como no Y.

Historia de la paradoja

El argumento sorites es una de las diversas paradojas atribuidas a Eubulides de Mileto, filósofo griego de la escuela megárica.[1]​ Algunas fuentes la remontan a Zenón de Elea.[2]​ En la época helenística, los escépticos emplearon la paradoja para mostrar las debilidades de sistemas dogmáticos como el estoicismo.[3]

Esta paradoja fue empleada por Samuel Beckett en algunas de sus piezas teatrales, como por ejemplo en Los días felices.

Notas

  1. Diógenes Laercio, Vidas de los filósofos ilustres, libro II (cap. sobre Euclides de Megara).
  2. Cf. Diels-Kranz, Die Fragmente der Vorsokratiker, «Zenón», fragmento A 29. Las fuentes del fragmento A 29 de Zenón son: Aristóteles, Física, VII, 5, 250a19 y Simplicio, Phys., 1108, 18.
  3. Cf. artículo sobre el sorites en la Stanford Encyclopedia of Philosophy (en inglés) (enlace consultado el 17 de agosto de 2008).

Véase también

Enlaces externos

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9