Share to: share facebook share twitter share wa share telegram print page

 

Nudo primo

El eslabón de Hopf, el más simple de los nudos primos

En teoría de nudos, un nudo primo o eslabón primo es un nudo que es, en cierto sentido, indescomponible. Específicamente, es un nudo no trivial que no puede describirse como la suma conexa de dos nudos no triviales. Los nudos que no son primos se denominan nudos compuestos o enlaces compuestos. Puede ser un problema no trivial determinar si un nudo dado es primo o no.

Propiedades

Una familia de ejemplos de nudos primos son los nudos tóricos, que se forman envolviendo un toro haciendo pasar un cordel por su agujero central para enrollarlo p veces en un sentido y q veces en el otro, cuando p y q son números enteros coprimos.

El nudo principal más simple es el trébol, con tres cruces, que es en realidad un nudo toroide (2, 3). El nudo en ocho, con cuatro cruces, es el nudo sin toroide más simple. Para cualquier número entero n positivo, hay un número finito de nudos primos con n cruces. Los primeros valores (sucesión A002863 en OEIS) se dan en la siguiente tabla:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Número de nudos primos
con n cruces
0 0 1 1 2 3 7 21 49 165 552 2176 9988 46972 253293 1388705
Nudos compuestos 0 0 0 0 0 2 1 4 ... ... ... ...
Total: (sucesión A002863 en OEIS) 0 0 1 1 2 5 8 25 ... ... ... ...

Los casos de nudos enantiomorfos se cuentan solo una vez en esta tabla y en el siguiente cuadro (es decir, un nudo y su imagen especular se consideran equivalentes).

Un gráfico de todos los nudos principales con siete o menos cruces, sin incluir las imágenes especulares, más el cordel desanudado (que no se considera primo)

Teorema de Schubert

Un teorema debido a Horst Schubert establece que cada nudo puede expresarse de manera única como una suma conexa de nudos primos.[1]

Véase también

Referencias

  1. Schubert, H. "Die eindeutige Zerlegbarkeit eines Knotens in Primknoten". S.-B Heidelberger Akad. Wiss. Math.-Nat. Kl. 1949 (1949), 57–104.

Enlaces externos

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9