Share to: share facebook share twitter share wa share telegram print page

 

Independencia (lógica matemática)

En lógica matemática, la noción de independencia o indecidibilidad se refiere a la imposibilidad de demostrar o refutar un predicado a partir de otros.

Una sentencia σ se dice independiente o indecidible en una teoría lógica T si T no demuestra ni refuta σ; esto es, si no es posible probar σ partiendo de T, ni probar que σ es falsa.

Terminología

El adjetivo indecidible se usa como sinónimo de independiente, por ejemplo, «sentencia indecidible en la teoría T». Sin embargo, indecidible también se usa en el ámbito de la teoría de la computabilidad con otro significado. Un problema indecidible es un problema matemático de respuesta «sí o no» que no puede resolverse mediante un algoritmo. Ambos conceptos son distintos, pero pueden aparecer relacionados entre sí. Por ejemplo, el problema de decisión consistente en determinar si una sentencia es independiente en una teoría T es a menudo indecidible.

También puede ocurrir que «independiente en T» se utilice tan solo en el sentido de «no demostrable en T», en lugar de «no demostrable ni refutable en T», y consistente se utilice entonces en el sentido de «no refutable en T».

Ejemplos de independencia

Muchas sentencias interesantes en teoría de conjuntos axiomática son independientes de la teoría de conjuntos de Zermelo-Fraenkel (ZF). Los siguientes enunciados son independientes de ZF (siempre que ésta sea consistente):

El teorema de incompletitud de Gödel establece la existencia de proposiciones independientes en cualquier teoría que contenga la aritmética de Peano, tales como:

Además se conocen enunciados puramente aritméticos, que no involucran directamente conceptos lógicos, independientes de dichos axiomas:

Otro ejemplo muy conocido es el quinto postulado de Euclides, que no puede ser demostrado a partir de los restantes axiomas de la geometría euclídea. Esto demuestra la consistencia de las geometrías no euclídeas.

Referencias

Enlaces externos

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9