Share to: share facebook share twitter share wa share telegram print page

 

Hélice (geometría)

Animación de una hélice.

Una hélice, en geometría, es el nombre que recibe toda línea curva cuyas tangentes forman un ángulo constante (α) con una dirección fija en el espacio.

Ecuación vectorial

Si su ecuación vectorial es , siendo s el arco, quiere decir que existe un vector unitario fijo tal que para todo s se verifica (constante).

Teorema de Lancret

Una caracterización de las hélices viene dada por el siguiente teorema conocido como teorema de Lancret.

Es condición necesaria y suficiente para que una curva sea una hélice el que se verifique , siendo una constante. Aquí es la curvatura y la torsión.

Hélices singulares

Las hélices más singulares son: la hélice circular, o hélice cilíndrica, la hélice cónica y la hélice esférica.

Hélice cilíndrica

Paso dos a derecha.
Paso dos a izquierda.
Paso tres a derecha.
Paso tres a izquierda.
Paso cuatro a derecha.
Paso cuatro a izquierda.
De una entrada a derecha.
De una entrada a izquierda.
De dos entrada a derecha.
De dos entrada a izquierda.
De tres entrada a derecha.
De tres entrada a izquierda.

Una hélice cilíndrica es una curva que corta a las generatrices de un cilindro recto con un ángulo constante. Es decir, que la distancia entre dos puntos de corte consecutivos de la hélice con cualquiera de las mencionadas generatrices (rectas paralelas al eje del cilindro y contenidas en su superficie externa) es una constante de la curva, independiente de la generatriz o los puntos escogidos, llamada "paso de hélice".

Expresión analítica

Desde un punto de vista analítico, una hélice queda definida por las siguientes expresiones paramétricas:

(1)

Donde r es el radio de giro de la espiral, es el ángulo girado por unidad de tiempo, t es el tiempo y k es el avance en el sentido z por unidad de tiempo, según el sentido sea levógiro (+1) o dextrógiro (-1). Si de la tercera ecuación:

Forma de hélice cónica en la naturaleza.

despejamos t:

y lo sustituimos en las dos primeras, tendremos:

(2)

Como y son valores conocidos y constantes, podemos definir:

con lo que tenemos:

(3)

Con lo que queda determinadas las coordenadas de la espiral, obteniéndose x e y en función de los parámetros de la espiral y de z.

Propiedades

  • La proyección de la hélice sobre un plano paralelo al eje del cilindro es una curva sinusoidal.
  • La geodésica de un cilindro recto de base circular es un arco de hélice (es decir, el camino más corto entre dos puntos situados en la superficie de un cilindro, que no salga de dicha superficie, es un trozo de hélice).
  • Para una hélice cilíndrica dada por las ecuaciones (3) y de altura H la longitud de arco viene dada por:
  • La curvatura de la hélice cilíndrica dada por las ecuaciones (3) es constante y viene dada por:

Hélice cónica

Esta curva está situada sobre un cono.

Expresión analítica

Una forma paramétrica conveniente para la espiral cónica viene dada por

donde es el ángulo de semiobertura del cono sobre el que yace la curva y controla si la curva es levógira o dextrógira.

Hélice esférica

Se denomina hélice esférica a la contenida en una superficie esférica. Por ser hélice se verificará (constante), o lo que es lo mismo .

Por ser una curva esférica la esfera osculatriz será constante, siendo la esfera sobre la que está situada la curva. Entonces, el radio de la esfera osculatriz es constante. Por consiguiente (constante).

La hélice esférica.

Como , será

Haciendo el cambio , se obtiene:

, o lo que es lo mismo, :

Integrando la igualdad anterior se obtiene: .

Se puede hacer C = 0, tomando como origen de arcos el punto en el que y por tanto .

Aceptando esta hipótesis y elevando al cuadrado se obtiene .

Como: , será:

y como , resulta: , y por tanto:

Las ecuaciones obtenidas anteriormente determinan las ecuaciones intrínsecas de las hélices esféricas. Despejando se obtiene:

En el caso general, se obtiene como ecuaciones intrínsecas:

Véase también

Enlaces externos


Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9