Share to: share facebook share twitter share wa share telegram print page

 

Función lineal

Función lineal.

En geometría analítica y álgebra elemental, una función lineal es una función polinómica de primer grado. Se le llama lineal dado que su representación en el plano cartesiano es una línea recta. Esta función se puede escribir como:

donde y son constantes reales y es una variable real. La constante determina la pendiente o inclinación (/) de la recta, y la constante determina el punto de corte de la recta con el eje vertical

Sin embargo, no se trata de un aplicación lineal en el sentido del álgebra lineal, sino de un aplicación afín, ya que generalmente no se cumple la condición de linealidad. Por lo tanto, también se denomina función lineal afín. Una aplicación lineal o función lineal en el sentido del álgebra lineal sólo se da en el caso especial de , es decir, . Este tipo de funciones también se denominan funcion lineal homogénea o de proporcionalidad. Siguiendo este término, la función para el caso también se denomina función lineal general o función lineal no homogénea. En este artículo, se mantiene el término función lineal que se utiliza frecuentemente.

Ejemplos

Dos rectas y su ecuaciones en coordenadas cartesianas.

Una función lineal de una única variable dependiente es de la forma:

que se conoce como ecuación de la recta en el plano lineal , . Este función está determinada de una variable (normalmente esta variable se denota con ), que puede ser escrita como la suma de términos de la forma (donde es un número real y es un número natural; es decir, solo puede ser 0 o 1).

En la figura se ven tres rectas, que corresponden a las ecuaciones lineales siguientes:

en esta recta el parámetro es igual a (corresponde al valor de la pendiente de la recta), es decir, cuando aumentamos en una unidad entonces aumenta en unidad, el valor de es 2, luego la recta corta el eje en el punto .

En la ecuación:

la pendiente de la recta es el eje , es decir, cuando el valor de aumenta en una unidad, el valor de disminuye en una unidad; el corte con el eje es en , dado que el valor de .

En una recta el valor de corresponde a la tangente del ángulo de inclinación de la recta con el eje de las abscisas (eje ) a través de la expresión:

Funciones lineales de diversas variables

Las funciones lineales de diversas variables admiten también interpretaciones geométricas. Así una función lineal de dos variables de la forma

Representa un plano y una función

Representa una hipersuperficie plana de dimensión n y pasa por el origen de coordenadas en un espacio (n + 1)-dimensional.

Véase también

Referencias bibliográficas

  • Larrauri Pacheco, Agustín (7 de 1998). Matemáticas, 2 ESO (1 edición). Larrauri Editorial, S.A. p. 304. ISBN 978-84-8142-033-3. 
  • Larrauri Pacheco, Agustín (4 de 1997). Matemáticas, 3 ESO (1 edición). Larrauri Editorial, S.A. p. 360. ISBN 978-84-8142-023-4. 
  • Larrauri Pacheco, Agustín (3 de 1997). Matemáticas, FP 1 (10 edición). Larrauri Editorial, S.A. p. 496. ISBN 978-84-85207-79-4. 
  • Larrauri Pacheco, Agustín (8 de 1989). Ejercicios de matemáticas : FP 1 (1 edición). Larrauri Editorial, S.A. p. 480. ISBN 978-84-85207-81-7. 
  • Álvarez Areces, Santiago; Fernández Flórez, Manuel (6 de 1990). Matemáticas, área formativa común, 1 FP, 1 grado (1 edición). Editorial Everest, S.A. p. 432. ISBN 978-84-241-7220-6. 
  • Checa (2 de 1989). Matemáticas : 1 FP, 1 curso (1 edición). p. 286. ISBN 978-84-348-2667-0. 
  • Miller, Charles D., Heeren, Vern E. y John Hornsby, Matemática: razonamiento y aplicaciones, Paerson Educación de México, S.A. de C.V. ISBN 970-26-0752-3
  • Rojas, C. (2021). Función Lineal y Cuadrática, Red Descartes. Cordoba, España. ISBN 978-84-18834-16-5

Enlaces externos

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9