Share to: share facebook share twitter share wa share telegram print page

 

Fibrado tangente

Informalmente, el fibrado tangente a una variedad (en este caso un círculo dibujado en azul) puede concebirse considerando todas las rectas tangentes (arriba), y "disponiéndolas" de una manera suave y sin solapes (abajo)

En matemáticas, el fibrado tangente de una variedad es uno de los tipos más sencillos de fibrado obtenido como la unión disjunta de todos los espacios tangentes en cada punto de la variedad.

Definición como direcciones de las curvas

Supongamos que M es una variedad diferenciable Ck, y φ: URn donde U es un subconjunto abierto de M, y n es la dimensión de la variedad, en la carta φ(·) además supóngase que TpM es el espacio tangente en un punto p de M. Entonces el fibrado tangente, es la unión disjunta de los espacios tangentes a diferentes puntos de la variedad:

donde TpM denota el espacio tangente a M en el punto p. Así, un elemento de TM se puede pensar como un par ordenado (pv), donde p es un punto de M y v es un vector tangente a M en el punto p. Existe una proyección:

definida por π(pv) = p. Esta proyección "colapsa" cada espacio tangente TpM en un único punto x.


Es útil, para distinguir entre el fibrado y el espacio tangente, considerar sus dimensiones, 2n, n respectivamente. Es decir, el fibrado tangente considera dimensiones tanto de las posiciones en la variedad así como de las direcciones tangentes.

Puesto que podemos definir una función de la proyección, π para cada elemento del fibrado tangente que da el elemento en la variedad cuyo espacio tangente contiene el primer elemento, todo fibrado tangente es también un fibrado.[1]

Referencias

  1. «El fibrado tangente». Consultado el 15 de diciembre de 2021. 

Bibliografía

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9