Share to: share facebook share twitter share wa share telegram print page

 

Conjunto polar (teoría del potencial)

En matemáticas, en el área de la teoría del potencial clásico, los conjuntos polares[1]​ son aquellos "conjuntos insignificantes", similar a la forma en que los conjuntos de medida cero son los conjuntos negligibles en la teoría de la medida.

Definición

Un conjunto en (donde ) es un conjunto polar si existe una función superarmónica no constante

en

tal que

Téngase en cuenta que existen otras formas (equivalentes) en las que se pueden definir los conjuntos polares, como reemplazando "subarmónico" por "superarmónico" y por en la definición anterior.[1]

Propiedades

Las propiedades más importantes de los conjuntos polares son:

  • Un conjunto unitario establecido en es polar.
  • Un conjunto contable en es polar.
  • La unión de una colección contable de conjuntos polares es polar.
  • Un conjunto polar tiene medida de Lebesgue cero en

Casi en todas partes

Una propiedad P se cumple casi en todas partes en un conjunto S si se cumple en SE, donde E es un conjunto polar de Borel. Si P se cumple aproximadamente en todas partes, entonces se cumple casi en todas partes.[2]

Véase también

Referencias

  1. a b Joseph L. Doob (2012). Classical Potential Theory and Its Probabilistic Counterpart. Springer Science & Business Media. pp. 57 de 846. ISBN 9783642565731. Consultado el 27 de noviembre de 2023. 
  2. Ransford (1995) p.56

Bibliografía

Enlaces externos

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9