Share to: share facebook share twitter share wa share telegram print page

 

Campo central

Un campo central es un campo de fuerzas conservativo tal que la energía potencial de una partícula solo dependa de la distancia (escalar) a un punto fijo llamado centro o fuente del campo.

El campo gravitatorio del sol, tal como es tratado matemáticamente en la mecánica newtoniana es un ejemplo de campo central (sin embargo, en teoría de la relatividad dicho campo gravitatorio tiene un tratamiento matemático más complejo).

Caracterización matemática

Puesto que los campos centrales por definición son conservativos pueden obtenerse como el gradiente de un potencial donde es la distancia a la fuente del campo. Por tanto en cada punto del espacio el campo central viene dado por:

(1)

Una propiedad muy importante del movimiento en un campo central es que el momento angular (respecto al centro del campo) se conserva, es decir, esa magnitud es una constante del movimiento:

(2)

Donde los dos términos a que da lugar la derivada del producto se acaban anulando ya que en los dos casos resultan vectores paralelos y el producto vectorial de dos vectores paralelos se anula. Además puesto que el momento angular y el vector de posición son permanentemente perpendiculares y al ser el primer vector constante, se sigue el que movimiento en un campo central está siempre confinado al plano perpendicular al momento angular y por tanto la trayectoria de la partícula será una curva plana.

Movimiento en un campo central

El movimiento de una partícula en un campo central tiene al menos dos constantes de movimiento: la energía mecánica total (por ser el campo conservativo) y el momento angular. Como el movimiento tiene dos dimensiones, ya que se da sobre un plano, las ecuaciones del movimiento y de la trayectoria son totalmente integrables por el método de cuadraturas.

Para ver esto escribamos primero el lagrangiano, que expresado en coordenadas polares sobre el plano del movimiento resulta ser tan sencillo como:

(3)

Por lo que las ecuaciones de movimiento, obtenidas substituyendo el lagrangiano anterior en las ecuaciones de Euler-Lagrange son simplemente:

De la primera de ellas se obtiene que la cantidad entre paréntesis, que coincide con el módulo del momento angular Lz que permanece constante, de acuerdo con lo que sabíamos. Substituyendo ese resultado en la ecuación de la energía total tenemos:

(4)

Y esta última ecuación puede integrarse sin dificultad, obteniéndose la siguiente cuadratura:

(5)

Esa ecuación da implícitamente la relación de la distancia entre el centro del campo y la partícula que se mueve a lo largo del tiempo. Para encontrar la trayectoria basta usar:

(6)

Descripción del movimiento

La ecuación (4) implica que el movimiento de una partícula en un campo central respecto a la coordenada radial r se parece a un movimiento unidimensional en que la energía potencial ha sido corregida por un término dependiente de Lz (usualmente llamado barrera centrífuga). Eso implica que el movimiento de la coordenada r está acotado entre un valor máximo y un mínimo , es decir la coordenada r tiene una variación periódica.

Sin embargo, en general el movimiento en un campo central no resulta periódico, sino cuasiperiódico, ya que es la composición de dos movimientos periódicos, en y en , de períodos que en general no coincidirán. Cuando la coordenada radial experimenta un ciclo completo, la coordenada polar habrá tenido una variación dada por:[1]

(7)

La condición de que la trayectoria sea perfectamente cerrada, y por tanto periódica, equivale a que en la igualdad anterior , cosa que en general no se cumplirá. Si c es efectivamente racional la "órbita" o trayectoria será periódica, sin por el contrario c no resulta racional el movimiento será solo cuasiperiódico y la órbita será un conjunto denso que "llena" el anillo comprendido entre, r = rmin y r = rmax.

Véase también

Referencias

  1. Landau y Lifshitz, 1991, p. 38

Bibliografía

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9