Share to: share facebook share twitter share wa share telegram print page

 

Bucles de Wilson

En teoría de campos de gauge, un bucle o lazo de Wilson es un observable invariante de gauge obtenido a partir de la holonomía de la conexión de gauge alrededor de un lazo dado.

En la teoría clásica, la colección de todos los lazos de Wilson contiene suficiente información como para reconstruir la conexión de gauge módulo una transformación de gauge.

En teoría cuántica de campos, la definición de observables de lazos de Wilson como operadores en toda regla en el espacio de Fock es un problema matemático delicado y requiere regularización, generalmente equipando cada lazo con un framing. La acción de los operadores de lazo de Wilson tiene la interpretación de crear una excitación elemental del campo cuántico que se localiza en el lazo. De esta manera, los "tubos de flujo" de Faraday se convierten en excitaciones elementales del campo electromagnético cuántico.

Los lazos de Wilson fueron introducidos en la década de 1970 en un intento de formulación no perturbativa de la cromodinámica cuántica (QCD), o por lo menos como una colección conveniente de variables para describir el régimen de acoplo fuerte en QCD. Los lazos de Wilson se inventaron para solucionar el problema del confinamiento, que sigue estando sin resolver hoy día.

El hecho de que las teorías cuánticas de campos de gauge con acoplamiento fuerte tienen excitaciones elementales no perturbativas que son lazos motivó a Aleksandr Poliakov a formular una de las primeras teorías de cuerdas, que describen la propagación de un lazo elemental cuántico en el espacio-tiempo.

Los lazos de Wilson desempeñan un papel importante en la formulación de la gravedad cuántica de lazos, pero generalizados a Redes de espín (SN).

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9