Share to: share facebook share twitter share wa share telegram print page

 

Aristas múltiples

Cuando un grafo admite aristas múltiples, se llama multigrafo.

En teoría de grafos, las aristas múltiples (también llamadas aristas paralelas o una multi-arista), son dos o más aristas que son incidentes (es decir, que conectan) a al menos dos vértices. Los grafos sin aristas múltiples son llamados grafos simples.

Dependiendo del contexto, un grafo puede definirse de manera que permita o no la presencia de aristas múltiples (del mismo modo que a veces se permite y a veces no la presencia de bucles):

  • En un contexto en que se permiten la presencia de aristas múltiples y bucles, un grafo sin bucles es usualmente llamado multigrafo.[1]
  • En un contexto en que no se permiten aristas múltiples y bucles, un multigrafo o pseudografo es definido para referirse a un "grafo" que puede tener bucles y aristas múltiples.[2]

Las aristas múltiples son útiles, por ejemplo, en la consideración de redes eléctricas, desde un punto de vista de teoría de grafos.[3]

Un grafo planar permanece planar si es añadida una arista entre dos vértices ya unidos por una arista; por lo tanto, la agregación de aristas múltiples preserva la planaridad.[4]

Notas

  1. Ver por ejemplo Balakrishnan, p. 1, y Gross (2003), p. 4, Zwillinger, p. 220.
  2. Ver por ejemplo Bollobas, p. 7, Diestel, p. 25, y Harary, p. 10.
  3. Bollobas, pp. 39, 40.
  4. Gross (1998), p. 308.

Referencias

  • Balakrishnan, V. K.; Graph Theory, McGraw-Hill; 1.ª edición (1 de febrero de 1997). ISBN 0-07-005489-4.
  • Bollobas, Bela; Modern Graph Theory, Springer; 1.ª edición (12 de agosto de 2002). ISBN 0-387-98488-7.
  • Diestel, Reinhard; Graph Theory, Springer; 2.ª edición (18 de febrero de 2000). ISBN 0-387-98976-5.
  • Gross, Jonathon L, y Yellen, Jay; Graph Theory and Its Applications, CRC Press (30 de diciembre de 1998). ISBN 0-8493-3982-0.
  • Gross, Jonathon L, y Yellen, Jay; (eds); Handbook of Graph Theory. CRC (29 de diciembre de 2003). ISBN 1-58488-090-2.
  • Zwillinger, Daniel; CRC Standard Mathematical Tables and Formulae, Chapman & Hall/CRC; 31a edición (27 de noviembre de 2002). ISBN 1-58488-291-3.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9