Vector describing a wave; often its propagation direction
In physics, a wave vector (or wavevector) is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave (inversely proportional to the wavelength), and its direction is perpendicular to the wavefront. In isotropic media, this is also the direction of wave propagation.
A closely related vector is the angular wave vector (or angular wavevector), with a typical unit being radian per metre. The wave vector and angular wave vector are related by a fixed constant of proportionality, 2π radians per cycle.
It is common in several fields of physics to refer to the angular wave vector simply as the wave vector, in contrast to, for example, crystallography.[1][2] It is also common to use the symbol k for whichever is in use.
The terms wave vector and angular wave vector have distinct meanings. Here, the wave vector is denoted by and the wavenumber by . The angular wave vector is denoted by k and the angular wavenumber by k = |k|. These are related by .
ψ is a function of r and t describing the disturbance describing the wave (for example, for an ocean wave, ψ would be the excess height of the water, or for a sound wave, ψ would be the excess air pressure).
A is the amplitude of the wave (the peak magnitude of the oscillation),
ω is the (temporal) angular frequency of the wave, describing how many radians it traverses per unit of time, and related to the periodT by the equation
k is the angular wave vector of the wave, describing how many radians it traverses per unit of distance, and related to the wavelength by the equation
The equivalent equation using the wave vector and frequency is[3]
The direction in which the wave vector points must be distinguished from the "direction of wave propagation". The "direction of wave propagation" is the direction of a wave's energy flow, and the direction that a small wave packet will move, i.e. the direction of the group velocity. For light waves in vacuum, this is also the direction of the Poynting vector. On the other hand, the wave vector points in the direction of phase velocity. In other words, the wave vector points in the normal direction to the surfaces of constant phase, also called wavefronts.
In a losslessisotropic medium such as air, any gas, any liquid, amorphous solids (such as glass), and cubic crystals, the direction of the wavevector is the same as the direction of wave propagation. If the medium is anisotropic, the wave vector in general points in directions other than that of the wave propagation. The wave vector is always perpendicular to surfaces of constant phase.
A moving wave surface in special relativity may be regarded as a hypersurface (a 3D subspace) in spacetime, formed by all the events passed by the wave surface. A wavetrain (denoted by some variable X) can be regarded as a one-parameter family of such hypersurfaces in spacetime. This variable X is a scalar function of position in spacetime. The derivative of this scalar is a vector that characterizes the wave, the four-wavevector.[7]
where the angular frequency is the temporal component, and the wavenumber vector is the spatial component.
Alternately, the wavenumber k can be written as the angular frequency ω divided by the phase-velocityvp, or in terms of inverse period T and inverse wavelength λ.
In the situation where light is being emitted by a fast moving source and one would like to know the frequency of light detected in an earth (lab) frame, we would apply the Lorentz transformation as follows. Note that the source is in a frame Ss and earth is in the observing frame, Sobs.
Applying the Lorentz transformation to the wave vector
and choosing just to look at the component results in
where is the direction cosine of with respect to
So
Source moving away (redshift)
As an example, to apply this to a situation where the source is moving directly away from the observer (), this becomes:
Source moving towards (blueshift)
To apply this to a situation where the source is moving straight towards the observer (θ = 0), this becomes:
^Fowles, Grant (1968). Introduction to modern optics. Holt, Rinehart, and Winston. p. 177.
^"This effect has been explained by Musgrave (1959) who has shown that the energy of an elastic wave in an anisotropic medium will not, in general, travel along the same path as the normal to the plane wavefront ...", Sound waves in solids by Pollard, 1977. link
^Donald H. Menzel (1960). "§10.5 Bloch wave". Fundamental Formulas of Physics, Volume 2 (Reprint of Prentice-Hall 1955 2nd ed.). Courier-Dover. p. 624. ISBN978-0486605968.