Share to: share facebook share twitter share wa share telegram print page

 

Von Kármán constant

In fluid dynamics, the von Kármán constant (or Kármán's constant), named for Theodore von Kármán, is a dimensionless constant involved in the logarithmic law describing the distribution of the longitudinal velocity in the wall-normal direction of a turbulent fluid flow near a boundary with a no-slip condition. The equation for such boundary layer flow profiles is:

where u is the mean flow velocity at height z above the boundary. The roughness height (also known as roughness length) z0 is where appears to go to zero. Further κ is the von Kármán constant being typically 0.41, and is the friction velocity which depends on the shear stress τw at the boundary of the flow:

with ρ the fluid density.

The Kármán constant is often used in turbulence modeling, for instance in boundary-layer meteorology to calculate fluxes of momentum, heat and moisture from the atmosphere to the land surface. It is considered to be a universal (κ ≈ 0.40).

Gaudio, Miglio and Dey argued that the Kármán constant is however nonuniversal in flows over mobile sediment beds.

In recent years the von Kármán constant has been subject to periodic scrutiny. Reviews (Foken, 2006; Hogstrom, 1988; Hogstrom, 1996) report values of κ between 0.35 and 0.42. The overall conclusion of over 18 studies is that κ is constant, close to 0.40. For incompressible and frictionless ("ideal") fluids, Baumert (2013) used Kolmogorov's classical ideas on turbulence to derive ideal values of a number of relevant constants of turbulent motions, among them von Kármán's constant as .


See also

References

  • Baumert, H. Z. (2013). "Universal equations and constants of turbulent motion" Physica Scripta T155 (2013) 014001 (12pp). Online at stacks.iop.org/PhysScr/T155/014001
  • Baumert H. Z., Wessling B. (2016). "On turbulence in dilatant dispersions". Physica Scripta 91(7):074003. DOI:10.1088/0031-8949/91/7/074003
  • Bonan, G. B. (2005). "Land Surface Model (LSM 1.0) for Ecological, Hydrological, Atmospheric Studies. Model product". Available on-line [1] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.
  • Foken T. (2006). "50 years of the Monin-Obukhov similarity theory". Boundary-Layer Meteorology, Vol. 119, 431-447.
  • Gaudio, R. Miglio, R. and Dey, S. (2010). "Nonuniversality of von Kármán’s κ in fluvial streams". Journal of Hydraulic Research, International Association for Hydraulic Research (IAHR), Vol. 48, No. 5, 658-663
  • Hogstrom U (1996). "Review of some basic characteristics of the atmospheric surface layer". Boundary-Layer Meteorology, Vol. 78, 215-246.
  • Hogstrom U (1988). "Non-dimensional wind and temperature profiles in the atmospheric surface layer-a re-evaluation". Boundary Layer Meteorology, Vol. 42, 55-78.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9