Share to: share facebook share twitter share wa share telegram print page

 

The Chemical Basis of Morphogenesis

Turing's paper explained how natural patterns, such as stripes, spots, and spirals, like those of the giant pufferfish, may arise.

"The Chemical Basis of Morphogenesis" is an article that the English mathematician Alan Turing wrote in 1952.[1] It describes how patterns in nature, such as stripes and spirals, can arise naturally from a homogeneous, uniform state. The theory, which can be called a reaction–diffusion theory of morphogenesis, has become a basic model in theoretical biology.[2] Such patterns have come to be known as Turing patterns. For example, it has been postulated that the protein VEGFC can form Turing patterns to govern the formation of lymphatic vessels in the zebrafish embryo.[3]

Reaction–diffusion systems

Reaction–diffusion systems have attracted much interest as a prototype model for pattern formation. Patterns such as fronts, spirals, targets, hexagons, stripes and dissipative solitons are found in various types of reaction-diffusion systems in spite of large discrepancies e.g. in the local reaction terms. Such patterns have been dubbed "Turing patterns".[4]

Reaction–diffusion processes form one class of explanation for the embryonic development of animal coats and skin pigmentation.[5][6] Another reason for the interest in reaction-diffusion systems is that although they represent nonlinear partial differential equations, there are often possibilities for an analytical treatment.[7][8][9]

See also

References

  1. ^ Turing, Alan (1952). "The Chemical Basis of Morphogenesis" (PDF). Philosophical Transactions of the Royal Society of London B. 237 (641): 37–72. Bibcode:1952RSPTB.237...37T. doi:10.1098/rstb.1952.0012. JSTOR 92463. S2CID 120437796.
  2. ^ Harrison, L.G. (1993). Kinetic Theory of Living Pattern. Cambridge University Press.
  3. ^ Wertheim, Kenneth (2019). "Can VEGFC form turing patterns in the Zebrafish embryo?". Bulletin of Mathematical Biology. 81 (4): 1201–1237. doi:10.1007/s11538-018-00560-2. PMC 6397306. PMID 30607882.
  4. ^ Wooley, T. E., Baker, R. E., Maini, P. K., Chapter 34, Turing's theory of morphogenesis. In Copeland, B. Jack; Bowen, Jonathan P.; Wilson, Robin; Sprevak, Mark (2017). The Turing Guide. Oxford University Press. ISBN 978-0198747826.
  5. ^ Meinhardt, H. (1982). Models of Biological Pattern Formation. Academic Press.
  6. ^ Murray, James D. (9 March 2013). Mathematical Biology. Springer Science & Business Media. pp. 436–450. ISBN 978-3-662-08539-4.
  7. ^ Grindrod, P. Patterns and Waves: The Theory and Applications of Reaction-Diffusion Equations, Clarendon Press (1991)
  8. ^ Smoller, J. Shock Waves and Reaction Diffusion Equations, Springer (1994)
  9. ^ Kerner, B. S. and Osipov, V. V. Autosolitons. A New Approach to Problems of Self-Organization and Turbulence, Kluwer Academic Publishers (1994).


Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9