Share to: share facebook share twitter share wa share telegram print page

 

Stooge sort

Stooge sort
Visualization of Stooge sort (only shows swaps).
ClassSorting algorithm
Data structureArray
Worst-case performance
Worst-case space complexity

Stooge sort is a recursive sorting algorithm. It is notable for its exceptionally bad time complexity of = The algorithm's running time is thus slower compared to reasonable sorting algorithms, and is slower than bubble sort, a canonical example of a fairly inefficient sort. It is, however, more efficient than Slowsort. The name comes from The Three Stooges.[1]

The algorithm is defined as follows:

  • If the value at the start is larger than the value at the end, swap them.
  • If there are three or more elements in the list, then:
    • Stooge sort the initial 2/3 of the list
    • Stooge sort the final 2/3 of the list
    • Stooge sort the initial 2/3 of the list again

It is important to get the integer sort size used in the recursive calls by rounding the 2/3 upwards, e.g. rounding 2/3 of 5 should give 4 rather than 3, as otherwise the sort can fail on certain data.

Implementation

Pseudocode

 function stoogesort(array L, i = 0, j = length(L)-1){
     if L[i] > L[j] then       // If the leftmost element is larger than the rightmost element
         swap(L[i],L[j])       // Then swap them
     if (j - i + 1) > 2 then   // If there are at least 3 elements in the array
         t = floor((j - i + 1) / 3)
         stoogesort(L, i, j-t) // Sort the first 2/3 of the array
         stoogesort(L, i+t, j) // Sort the last 2/3 of the array
         stoogesort(L, i, j-t) // Sort the first 2/3 of the array again
     return L
 }

Haskell

-- Not the best but equal to above 

stoogesort :: (Ord a) => [a] -> [a]
stoogesort [] = []
stoogesort src = innerStoogesort src 0 ((length src) - 1)

innerStoogesort :: (Ord a) => [a] -> Int -> Int -> [a]
innerStoogesort src i j 
    | (j - i + 1) > 2 = src''''
    | otherwise = src'
    where 
        src'    = swap src i j -- need every call
        t = floor (fromIntegral (j - i + 1) / 3.0)
        src''   = innerStoogesort src'   i      (j - t)
        src'''  = innerStoogesort src'' (i + t)  j
        src'''' = innerStoogesort src''' i      (j - t)

swap :: (Ord a) => [a] -> Int -> Int -> [a]
swap src i j 
    | a > b     =  replaceAt (replaceAt src j a) i b
    | otherwise = src
    where 
        a = src !! i
        b = src !! j

replaceAt :: [a] -> Int -> a -> [a]
replaceAt (x:xs) index value
    | index == 0 = value : xs
    | otherwise  =  x : replaceAt xs (index - 1) value

References

  1. ^ "CSE 373" (PDF). courses.cs.washington.edu. Retrieved 14 September 2020.

Sources

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9