Share to: share facebook share twitter share wa share telegram print page

 

Selberg's 1/4 conjecture

In mathematics, Selberg's conjecture, also known as Selberg's eigenvalue conjecture, conjectured by Selberg (1965, p. 13), states that the eigenvalues of the Laplace operator on Maass wave forms of congruence subgroups are at least 1/4. Selberg showed that the eigenvalues are at least 3/16. Subsequent works improved the bound, and the best bound currently known is 975/4096≈0.238..., due to Kim & Sarnak (2003).

The generalized Ramanujan conjecture for the general linear group implies Selberg's conjecture. More precisely, Selberg's conjecture is essentially the generalized Ramanujan conjecture for the group GL2 over the rationals at the infinite place, and says that the component at infinity of the corresponding representation is a principal series representation of GL2(R) (rather than a complementary series representation). The generalized Ramanujan conjecture in turn follows from the Langlands functoriality conjecture, and this has led to some progress on Selberg's conjecture.

References

  • Gelbart, S. (2001) [1994], "Selberg conjecture", Encyclopedia of Mathematics, EMS Press
  • Kim, Henry H.; Sarnak, Peter (2003), "Functoriality for the exterior square of GL4 and the symmetric fourth of GL2. Appendix 2.", Journal of the American Mathematical Society, 16 (1): 139–183, doi:10.1090/S0894-0347-02-00410-1, ISSN 0894-0347, MR 1937203
  • Selberg, Atle (1965), "On the estimation of Fourier coefficients of modular forms", in Whiteman, Albert Leon (ed.), Theory of Numbers, Proceedings of Symposia in Pure Mathematics, vol. VIII, Providence, R.I.: American Mathematical Society, pp. 1–15, ISBN 978-0-8218-1408-6, MR 0182610
  • Luo, W.; Rudnick, Z.; Sarnak, P. (1995-03-01). "On Selberg's eigenvalue conjecture". Geometric & Functional Analysis. 5 (2): 387–401. doi:10.1007/BF01895672. ISSN 1420-8970.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9