Share to: share facebook share twitter share wa share telegram print page

 

Quantum lithography

Quantum lithography is a type of photolithography, which exploits non-classical properties of the photons, such as quantum entanglement, in order to achieve superior performance over ordinary classical lithography. Quantum lithography is closely related to the fields of quantum imaging, quantum metrology, and quantum sensing. The effect exploits the quantum mechanical state of light called the NOON state. Quantum lithography was invented at Jonathan P. Dowling's group at JPL,[1] and has been studied by a number of groups.[2]

Of particular importance, quantum lithography can beat the classical Rayleigh criterion for the diffraction limit. Classical photolithography has an optical imaging resolution that is limited by the wavelength of light used. For example, in the use of photolithography to mass-produce computer chips, it is desirable to produce smaller and smaller features on the chip, which classically requires moving to smaller and smaller wavelengths (ultraviolet and x-ray), which entails exponentially greater cost to produce the optical imaging systems at these extremely short optical wavelengths.

Quantum lithography exploits the quantum entanglement between specially prepared photons in the NOON state and special photoresists, that display multi-photon absorption processes to achieve the smaller resolution without the requirement of shorter wavelengths. For example, a beam of red photons, entangled 50 at a time in the NOON state, would have the same resolving power as a beam of x-ray photons.

The field of quantum lithography is in its infancy, and although experimental proofs of principle have been carried out using the Hong–Ou–Mandel effect,[3] it is considered promising technology.

References

  1. ^ A. N. Boto; et al. (2000). "Quantum Interferometric Optical Lithography: Exploiting Entanglement to Beat the Diffraction Limit". Phys. Rev. Lett. 85 (13): 2733–2736. arXiv:quant-ph/9912052. Bibcode:2000PhRvL..85.2733B. doi:10.1103/PhysRevLett.85.2733. PMID 10991220. S2CID 7373285.
  2. ^ G. Björk; et al. (2001). "Entangled-State Lithography: Tailoring Any Pattern with a Single State". Phys. Rev. Lett. 86 (20): 4516–4519. arXiv:quant-ph/0011075. Bibcode:2001PhRvL..86.4516B. doi:10.1103/PhysRevLett.86.4516. PMID 11384272. S2CID 41939423.
  3. ^ M. D'Angelo; et al. (2001). "Two-Photon Diffraction and Quantum Lithography". Phys. Rev. Lett. 87 (1): 013602. arXiv:quant-ph/0103035. Bibcode:2001PhRvL..87a3602D. doi:10.1103/PhysRevLett.87.013602. PMID 11461466. S2CID 30001609.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9