Share to: share facebook share twitter share wa share telegram print page

 

Quantifier elimination

Quantifier elimination is a concept of simplification used in mathematical logic, model theory, and theoretical computer science. Informally, a quantified statement " such that " can be viewed as a question "When is there an such that ?", and the statement without quantifiers can be viewed as the answer to that question.[1]

One way of classifying formulas is by the amount of quantification. Formulas with less depth of quantifier alternation are thought of as being simpler, with the quantifier-free formulas as the simplest. A theory has quantifier elimination if for every formula , there exists another formula without quantifiers that is equivalent to it (modulo this theory).

Examples

An example from mathematics says that a single-variable quadratic polynomial has a real root if and only if its discriminant is non-negative:[1]

Here the sentence on the left-hand side involves a quantifier , whereas the equivalent sentence on the right does not.

Examples of theories that have been shown decidable using quantifier elimination are Presburger arithmetic,[2][3][4][5][6] algebraically closed fields, real closed fields,[7][8] atomless Boolean algebras, term algebras, dense linear orders,[7] abelian groups,[9] random graphs, as well as many of their combinations such as Boolean algebra with Presburger arithmetic, and term algebras with queues.

Quantifier eliminator for the theory of the real numbers as an ordered additive group is Fourier–Motzkin elimination; for the theory of the field of real numbers it is the Tarski–Seidenberg theorem.[7]

Quantifier elimination can also be used to show that "combining" decidable theories leads to new decidable theories (see Feferman–Vaught theorem).

Algorithms and decidability

If a theory has quantifier elimination, then a specific question can be addressed: Is there a method of determining for each ? If there is such a method we call it a quantifier elimination algorithm. If there is such an algorithm, then decidability for the theory reduces to deciding the truth of the quantifier-free sentences. Quantifier-free sentences have no variables, so their validity in a given theory can often be computed, which enables the use of quantifier elimination algorithms to decide validity of sentences.

Various model-theoretic ideas are related to quantifier elimination, and there are various equivalent conditions.

Every first-order theory with quantifier elimination is model complete. Conversely, a model-complete theory, whose theory of universal consequences has the amalgamation property, has quantifier elimination.[10]

The models of the theory of the universal consequences of a theory are precisely the substructures of the models of .[10] The theory of linear orders does not have quantifier elimination. However the theory of its universal consequences has the amalgamation property.

Basic ideas

To show constructively that a theory has quantifier elimination, it suffices to show that we can eliminate an existential quantifier applied to a conjunction of literals, that is, show that each formula of the form:

where each is a literal, is equivalent to a quantifier-free formula. Indeed, suppose we know how to eliminate quantifiers from conjunctions of literals, then if is a quantifier-free formula, we can write it in disjunctive normal form

and use the fact that

is equivalent to

Finally, to eliminate a universal quantifier

where is quantifier-free, we transform into disjunctive normal form, and use the fact that is equivalent to

Relationship with decidability

In early model theory, quantifier elimination was used to demonstrate that various theories possess properties like decidability and completeness. A common technique was to show first that a theory admits elimination of quantifiers and thereafter prove decidability or completeness by considering only the quantifier-free formulas. This technique can be used to show that Presburger arithmetic is decidable.

Theories could be decidable yet not admit quantifier elimination. Strictly speaking, the theory of the additive natural numbers did not admit quantifier elimination, but it was an expansion of the additive natural numbers that was shown to be decidable. Whenever a theory is decidable, and the language of its valid formulas is countable, it is possible to extend the theory with countably many relations to have quantifier elimination (for example, one can introduce, for each formula of the theory, a relation symbol that relates the free variables of the formula).[citation needed]

Example: Nullstellensatz for algebraically closed fields and for differentially closed fields.[clarification needed]

See also

Notes

  1. ^ a b Brown 2002.
  2. ^ Presburger 1929.
  3. ^ Mind: basic Presburger arithmetic — does not admit quantifier elimination. Nipkow (2010): "Presburger arithmetic needs a divisibility (or congruence) predicate '|' to allow quantifier elimination".
  4. ^ Grädel et al. (2007, p. 20) define Presburger arithmetic as . This extension does admit quantifier elimination.
  5. ^ Monk 2012, p. 240.
  6. ^ Enderton 2001, p. 188.
  7. ^ a b c Grädel et al. 2007.
  8. ^ Fried & Jarden 2008, p. 171.
  9. ^ Szmielew 1955, Page 229 describes "the method of eliminating quantification"..
  10. ^ a b Hodges 1993.

References

  • Brown, Christopher W. (July 31, 2002). "What is Quantifier Elimination". Retrieved 30 August 2023.
  • Monk, J. Donald (2012). Mathematical Logic (Graduate Texts in Mathematics (37)) (Softcover reprint of the original 1st ed. 1976 ed.). Springer. ISBN 9781468494549.
  • Presburger, Mojżesz (1929). "Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt". Comptes Rendus du I congrès de Mathématiciens des Pays Slaves, Warszawa: 92–101., see Stansifer (1984) for an English translation
  • Jeannerod, Nicolas; Treinen, Ralf. Deciding the First-Order Theory of an Algebra of Feature Trees with Updates. International Joint Conference on Automated Reasoning (IJCAR). doi:10.1007/978-3-319-94205-6_29.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9