Protostomia (/ˌproʊtəˈstoʊmi.ə/) is the clade of animals once thought to be characterized by the formation of the organism's mouth before its anus during embryonic development. This nature has since been discovered to be extremely variable among Protostomia's members, although the reverse is typically true of its sister clade, Deuterostomia.[1][2] Well-known examples of protostomes are arthropods, molluscs, annelids, flatworms and nematodes. They are also called schizocoelomates since schizocoely typically occurs in them.
In animals at least as complex as earthworms, the first phase in gut development involves the embryo forming a dent on one side (the blastopore) which deepens to become its digestive tube (the archenteron). In the sister-clade, the deuterostomes (lit.'second-mouth'), the original dent becomes the anus while the gut eventually tunnels through to make another opening, which forms the mouth. The protostomes (from Greek πρωτο-prōto- 'first' + στόμαstóma 'mouth') were so named because it was once believed that in all cases the embryological dent formed the mouth while the anus was formed later, at the opening made by the other end of the gut.[4][1]
It is now known that the fate of the blastopore among protostomes is extremely variable; while the evolutionary distinction between deuterostomes and protostomes remains valid, the descriptive accuracy of the name protostome is disputable.[1]
Protostome and deuterostome embryos differ in several other ways. Secondary body cavities (coeloms) generally form by schizocoely, where the coelom forms out of a solid mass of embryonic tissue splitting away from the rest, instead of by enterocoelic pouching, where the coelom would otherwise form out of in-folded gut walls.[5]
Evolution
The common ancestor of protostomes and deuterostomes was evidently a worm-like aquatic animal of the Ediacaran. The two clades diverged about 600 million years ago. Protostomes evolved into over a million species alive today, compared to ca. 73,000 deuterostome species.[6]
^Peters, Kenneth E.; Walters, Clifford C.; Moldowan, J. Michael (2005). The Biomarker Guide: Biomarkers and isotopes in petroleum systems and Earth history. Vol. 2. Cambridge University Press. p. 717. ISBN978-0-521-83762-0.
^Safra, Jacob E. (2003). The New Encyclopædia Britannica, Volume 1; Volume 3. Encyclopædia Britannica. p. 767. ISBN978-0-85229-961-6.
^The Invertebrate tree of life, Giribet & Edgecombe, 2020; p.155