Share to: share facebook share twitter share wa share telegram print page

 

Pentagonal hexecontahedron

Pentagonal hexacontahedron
Faces60
Edges150
Vertices92
Symmetry groupicosahedral symmetry
Dihedral angle (degrees)153.2°
Dual polyhedronsnub dodecahedron
Net

In geometry, a pentagonal hexecontahedron is a Catalan solid, dual of the snub dodecahedron. It has two distinct forms, which are mirror images (or "enantiomorphs") of each other. It has 92 vertices that span 60 pentagonal faces. It is the Catalan solid with the most vertices. Among the Catalan and Archimedean solids, it has the second largest number of vertices, after the truncated icosidodecahedron, which has 120 vertices.

Properties

3D model of a pentagonal hexecontahedron

The faces are irregular pentagons with two long edges and three short edges. Let be the real zero of the polynomial . Then the ratio of the edge lengths is given by: . The faces have four equal obtuse angles and one acute angle (between the two long edges). The obtuse angles equal , and the acute one equals . The dihedral angle equals .

Note that the face centers of the snub dodecahedron cannot serve directly as vertices of the pentagonal hexecontahedron: the four triangle centers lie in one plane but the pentagon center does not; it needs to be radially pushed out to make it coplanar with the triangle centers. Consequently, the vertices of the pentagonal hexecontahedron do not all lie on the same sphere and by definition it is not a zonohedron.

To find the volume and surface area of a pentagonal hexecontahedron, denote the shorter side of one of the pentagonal faces as , and set a constant t[1]

Then the surface area () is: .

And the volume () is: .

Using these, one can calculate the measure of sphericity for this shape:

Construction

Combining a unit circumradius icosahedron (12) centered at the origin with a chiral snub dodecahedron (60) combined with a dodecahedron of the same non-unity circumradius (20) to construct the pentagonal hexecontahedron

The pentagonal hexecontahedron can be constructed from a snub dodecahedron without taking the dual. Pentagonal pyramids are added to the 12 pentagonal faces of the snub dodecahedron, and triangular pyramids are added to the 20 triangular faces that do not share an edge with a pentagon. The pyramid heights are adjusted to make them coplanar with the other 60 triangular faces of the snub dodecahedron. The result is the pentagonal hexecontahedron.[2]

An alternate construction method uses quaternions and the icosahedral symmetry of the Weyl group orbits of order 60.[3] This is shown in the figure on the right.

Specifically, with quaternions from the binary Icosahedral group , where is the conjugate of and and , then just as the Coxeter group is the symmetry group of the 600-cell and the 120-cell of order 14400, we have of order 120. is defined as the even permutations of such that gives the 60 twisted chiral snub dodecahedron coordinates, where is one permutation from the first set of 12 in those listed above. The exact coordinate for is obtained by taking the solution to , with , and applying it to the normalization of .

Cartesian coordinates

Using the Icosahedral symmetry in the orbits of the Weyl group of order 60[4] gives the following Cartesian coordinates with is the golden ratio:

  • Twelve vertices of a regular icosahedron with unit circumradius centered at the origin with the coordinates
  • Twenty vertices of regular dodecahedron of unit circumradius centered at the origin scaled by a factor from the exact solution to the equation , which gives the coordinates

and

A group of two sets of twelve have 0 or 2 minus signs (i.e. 1 or 3 plus signs): and another group of three sets of 12 have 0 or 2 plus signs (i.e. 1 or 3 minus signs): Negating all vertices in both groups gives the mirror of the chiral snub dodecahedron, yet results in the same pentagonal hexecontahedron convex hull.

Variations

Isohedral variations can be constructed with pentagonal faces with 3 edge lengths.

This variation shown can be constructed by adding pyramids to 12 pentagonal faces and 20 triangular faces of a snub dodecahedron such that the new triangular faces are coparallel to other triangles and can be merged into the pentagon faces.


Snub dodecahedron with augmented pyramids and merged faces

Example variation

Net

Orthogonal projections

The pentagonal hexecontahedron has three symmetry positions, two on vertices, and one mid-edge.

Orthogonal projections
Projective
symmetry
[3] [5]+ [2]
Image
Dual
image
Spherical pentagonal hexecontahedron
Family of uniform icosahedral polyhedra
Symmetry: [5,3], (*532) [5,3]+, (532)
{5,3} t{5,3} r{5,3} t{3,5} {3,5} rr{5,3} tr{5,3} sr{5,3}
Duals to uniform polyhedra
V5.5.5 V3.10.10 V3.5.3.5 V5.6.6 V3.3.3.3.3 V3.4.5.4 V4.6.10 V3.3.3.3.5

This polyhedron is topologically related as a part of sequence of polyhedra and tilings of pentagons with face configurations (V3.3.3.3.n). (The sequence progresses into tilings the hyperbolic plane to any n.) These face-transitive figures have (n32) rotational symmetry.

n32 symmetry mutations of snub tilings: 3.3.3.3.n
Symmetry
n32
Spherical Euclidean Compact hyperbolic Paracomp.
232 332 432 532 632 732 832 ∞32
Snub
figures
Config. 3.3.3.3.2 3.3.3.3.3 3.3.3.3.4 3.3.3.3.5 3.3.3.3.6 3.3.3.3.7 3.3.3.3.8 3.3.3.3.∞
Gyro
figures
Config. V3.3.3.3.2 V3.3.3.3.3 V3.3.3.3.4 V3.3.3.3.5 V3.3.3.3.6 V3.3.3.3.7 V3.3.3.3.8 V3.3.3.3.∞

See also

References

  1. ^ "Pentagonal Hexecontahedron - Geometry Calculator". rechneronline.de. Retrieved 2020-05-26.
  2. ^ Reference
  3. ^ Koca, Mehmet; Ozdes Koca, Nazife; Al-Shu’eilic, Muna (2011). "Chiral Polyhedra Derived From Coxeter Diagrams and Quaternions". arXiv:1006.3149 [math-ph].
  4. ^ Koca, Mehmet; Ozdes Koca, Nazife; Koc, Ramazon (2010). "Catalan Solids Derived From 3D-Root Systems and Quaternions". Journal of Mathematical Physics. 51 (4). arXiv:0908.3272. doi:10.1063/1.3356985. S2CID 115157829.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9