Share to: share facebook share twitter share wa share telegram print page

 

Open formula

An open formula is a formula that contains at least one free variable.[citation needed]

An open formula does not have a truth value assigned to it, in contrast with a closed formula which constitutes a proposition and thus can have a truth value like true or false. An open formula can be transformed into a closed formula by applying a quantifier for each free variable. This transformation is called capture of the free variables to make them bound variables.

For example, when reasoning about natural numbers, the formula "x+2 > y" is open, since it contains the free variables x and y. In contrast, the formula "y x: x+2 > y" is closed, and has truth value true.

Open formulas are often used in rigorous mathematical definitions of properties, like

"x is an aunt of y if, for some person z, z is a parent of y, and x is a sister of z"

(with free variables x, y, and bound variable z) defining the notion of "aunt" in terms of "parent" and "sister". Another, more formal example, which defines the property of being a prime number, is

"P(x) if ∀m,n: m>1 ∧ n>1 → xmn",

(with free variable x and bound variables m,n).

An example of a closed formula with truth value false involves the sequence of Fermat numbers

studied by Fermat in connection to the primality. The attachment of the predicate letter P (is prime) to each number from the Fermat sequence gives a set of closed formulae. While they are true for n = 0,...,4, no larger value of n is known that obtains a true formula, as of 2023; for example, is not a prime. Thus the closed formula ∀n P(Fn) is false.

See also

References

  • Wolfgang Rautenberg (2008), Einführung in die Mathematische Logik (in German) (3. ed.), Wiesbaden: Vieweg+Teubner, ISBN 978-3-8348-0578-2
  • H.-P. Tuschik, H. Wolter (2002), Mathematische Logik – kurzgefaßt (in German), Heidelberg: Spektrum, Akad. Verlag, ISBN 3-8274-1387-7
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9