Share to: share facebook share twitter share wa share telegram print page

 

Moritz Pasch

Moritz Pasch

Moritz Pasch (8 November 1843, Breslau, Prussia (now Wrocław, Poland) – 20 September 1930, Bad Homburg, Germany) was a German mathematician of Jewish ancestry[1] specializing in the foundations of geometry. He completed his Ph.D. at the University of Breslau at only 22 years of age. He taught at the University of Giessen, where he is known to have supervised 30 doctorates.

In 1882, Pasch published a book, Vorlesungen über neuere Geometrie, calling for the grounding of Euclidean geometry in more precise primitive notions and axioms, and for greater care in the deductive methods employed to develop the subject. He drew attention to a number of heretofore unnoted tacit assumptions in Euclid's Elements. He then argued that mathematical reasoning should not invoke the physical interpretation of the primitive terms, but should instead rely solely on formal manipulations justified by axioms. This book is the point of departure for:

Pasch is perhaps best remembered for Pasch's axiom:

Given three noncollinear points a, b, c and a line X not containing any of these points, if X includes a point between a and b, then X also includes one and only one of the following: a point between a and c, or a point between b and c.

In other words, if a line crosses one side of a triangle, that line must also cross one of the two remaining sides of the same triangle. Pasch's axiom is not to be confused with Pasch's theorem.

Selected publications

  • Vorlesungen über neuere Geometrie, Leipzig 1882; 2nd edition. 1926.[2]
  • Einleitung in die Differential- und Integralrechnung, Leipzig 1882
  • Grundlagen der Analysis, Leipzig, 1908[3]
  • Mathematik und Logik, Leipzig, 1919
  • Die Begriffsswelt des Mathematikers in der Vorhalll der Geometrie, Leipzig, 1922

Translations

See also

References

  1. ^ Dirk Schlimm, "The correspondence between Moritz Pasch and Felix Klein" in Historia Mathematica Volume 40, Issue 2, May 2013, Page 186
  2. ^ Hollcroft, T. R. (1927). "Review: Vorlesungen über neuere Geometrie by Moritz Pasch, Second edition. With an appendix: Die Grundlegung der Geometrie in historischer Entwicklung by Max Dehn". Bull. Amer. Math. Soc. 33: 785–786. doi:10.1090/S0002-9904-1927-04481-0.
  3. ^ Owens, F. W. (1910). "Review: Grundlagen der Analysis von Moritz Pasch". Bull. Amer. Math. Soc. 16: 213–214. doi:10.1090/S0002-9904-1910-01893-0.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9