Share to: share facebook share twitter share wa share telegram print page

 

Modal matrix

In linear algebra, the modal matrix is used in the diagonalization process involving eigenvalues and eigenvectors.[1]

Specifically the modal matrix for the matrix is the n × n matrix formed with the eigenvectors of as columns in . It is utilized in the similarity transformation

where is an n × n diagonal matrix with the eigenvalues of on the main diagonal of and zeros elsewhere. The matrix is called the spectral matrix for . The eigenvalues must appear left to right, top to bottom in the same order as their corresponding eigenvectors are arranged left to right in .[2]

Example

The matrix

has eigenvalues and corresponding eigenvectors

A diagonal matrix , similar to is

One possible choice for an invertible matrix such that is

[3]

Note that since eigenvectors themselves are not unique, and since the columns of both and may be interchanged, it follows that both and are not unique.[4]

Generalized modal matrix

Let be an n × n matrix. A generalized modal matrix for is an n × n matrix whose columns, considered as vectors, form a canonical basis for and appear in according to the following rules:

  • All Jordan chains consisting of one vector (that is, one vector in length) appear in the first columns of .
  • All vectors of one chain appear together in adjacent columns of .
  • Each chain appears in in order of increasing rank (that is, the generalized eigenvector of rank 1 appears before the generalized eigenvector of rank 2 of the same chain, which appears before the generalized eigenvector of rank 3 of the same chain, etc.).[5]

One can show that

where is a matrix in Jordan normal form. By premultiplying by , we obtain

Note that when computing these matrices, equation (1) is the easiest of the two equations to verify, since it does not require inverting a matrix.[6]

Example

This example illustrates a generalized modal matrix with four Jordan chains. Unfortunately, it is a little difficult to construct an interesting example of low order.[7] The matrix

has a single eigenvalue with algebraic multiplicity . A canonical basis for will consist of one linearly independent generalized eigenvector of rank 3 (generalized eigenvector rank; see generalized eigenvector), two of rank 2 and four of rank 1; or equivalently, one chain of three vectors , one chain of two vectors , and two chains of one vector , .

An "almost diagonal" matrix in Jordan normal form, similar to is obtained as follows:

where is a generalized modal matrix for , the columns of are a canonical basis for , and .[8] Note that since generalized eigenvectors themselves are not unique, and since some of the columns of both and may be interchanged, it follows that both and are not unique.[9]

Notes

  1. ^ Bronson (1970, pp. 179–183)
  2. ^ Bronson (1970, p. 181)
  3. ^ Beauregard & Fraleigh (1973, pp. 271, 272)
  4. ^ Bronson (1970, p. 181)
  5. ^ Bronson (1970, p. 205)
  6. ^ Bronson (1970, pp. 206–207)
  7. ^ Nering (1970, pp. 122, 123)
  8. ^ Bronson (1970, pp. 208, 209)
  9. ^ Bronson (1970, p. 206)

References

  • Beauregard, Raymond A.; Fraleigh, John B. (1973), A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields, Boston: Houghton Mifflin Co., ISBN 0-395-14017-X
  • Bronson, Richard (1970), Matrix Methods: An Introduction, New York: Academic Press, LCCN 70097490
  • Nering, Evar D. (1970), Linear Algebra and Matrix Theory (2nd ed.), New York: Wiley, LCCN 76091646
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9