Share to: share facebook share twitter share wa share telegram print page

 

Matrix polynomial

In mathematics, a matrix polynomial is a polynomial with square matrices as variables. Given an ordinary, scalar-valued polynomial

this polynomial evaluated at a matrix is

where is the identity matrix.[1]

Note that has the same dimension as .

A matrix polynomial equation is an equality between two matrix polynomials, which holds for the specific matrices in question. A matrix polynomial identity is a matrix polynomial equation which holds for all matrices A in a specified matrix ring Mn(R).

Matrix polynomials are often demonstrated in undergraduate linear algebra classes due to their relevance in showcasing properties of linear transformations represented as matrices, most notably the Cayley–Hamilton theorem.

Characteristic and minimal polynomial

The characteristic polynomial of a matrix A is a scalar-valued polynomial, defined by . The Cayley–Hamilton theorem states that if this polynomial is viewed as a matrix polynomial and evaluated at the matrix itself, the result is the zero matrix: . An polynomial annihilates if ; is also known as an annihilating polynomial. Thus, the characteristic polynomial is a polynomial which annihilates .

There is a unique monic polynomial of minimal degree which annihilates ; this polynomial is the minimal polynomial. Any polynomial which annihilates (such as the characteristic polynomial) is a multiple of the minimal polynomial.[2]

It follows that given two polynomials and , we have if and only if

where denotes the th derivative of and are the eigenvalues of with corresponding indices (the index of an eigenvalue is the size of its largest Jordan block).[3]

Matrix geometrical series

Matrix polynomials can be used to sum a matrix geometrical series as one would an ordinary geometric series,

If is nonsingular one can evaluate the expression for the sum .

See also

Notes

  1. ^ Horn & Johnson 1990, p. 36.
  2. ^ Horn & Johnson 1990, Thm 3.3.1.
  3. ^ Higham 2000, Thm 1.3.

References

  • Gohberg, Israel; Lancaster, Peter; Rodman, Leiba (2009) [1982]. Matrix Polynomials. Classics in Applied Mathematics. Vol. 58. Lancaster, PA: Society for Industrial and Applied Mathematics. ISBN 978-0-898716-81-8. Zbl 1170.15300.
  • Higham, Nicholas J. (2000). Functions of Matrices: Theory and Computation. SIAM. ISBN 089-871-777-9..
  • Horn, Roger A.; Johnson, Charles R. (1990). Matrix Analysis. Cambridge University Press. ISBN 978-0-521-38632-6..
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9