Share to: share facebook share twitter share wa share telegram print page

 

Law of trichotomy

In mathematics, the law of trichotomy states that every real number is either positive, negative, or zero.[1]

More generally, a binary relation R on a set X is trichotomous if for all x and y in X, exactly one of xRy, yRx and x = y holds. Writing R as <, this is stated in formal logic as:

With this definition, the law of trichotomy states that < is trichotomous relation on the set of real numbers. In other words, if x and y are real numbers, then exactly one of the following must be true: x<y, x=y, y<x.

Properties

Examples

  • On the set X = {a,b,c}, the relation R = { (a,b), (a,c), (b,c) } is transitive and trichotomous, and hence a strict total order.
  • On the same set, the cyclic relation R = { (a,b), (b,c), (c,a) } is trichotomous, but not transitive; it is even antitransitive.

Trichotomy on numbers

A law of trichotomy on some set X of numbers usually expresses that some tacitly given ordering relation on X is a trichotomous one. An example is the law "For arbitrary real numbers x and y, exactly one of x < y, y < x, or x = y applies"; some authors even fix y to be zero,[1] relying on the real number's additive linearly ordered group structure. The latter is a group equipped with a trichotomous order.

In classical logic, this axiom of trichotomy holds for ordinary comparison between real numbers and therefore also for comparisons between integers and between rational numbers.[clarification needed] The law does not hold in general in intuitionistic logic.[citation needed]

In Zermelo–Fraenkel set theory and Bernays set theory, the law of trichotomy holds between the cardinal numbers of well-orderable sets even without the axiom of choice. If the axiom of choice holds, then trichotomy holds between arbitrary cardinal numbers (because they are all well-orderable in that case).[4]

See also

References

  1. ^ a b Trichotomy Law at MathWorld
  2. ^ Jerrold E. Marsden & Michael J. Hoffman (1993) Elementary Classical Analysis, page 27, W. H. Freeman and Company ISBN 0-7167-2105-8
  3. ^ H.S. Bear (1997) An Introduction to Mathematical Analysis, page 11, Academic Press ISBN 0-12-083940-7
  4. ^ Bernays, Paul (1991). Axiomatic Set Theory. Dover Publications. ISBN 0-486-66637-9.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9