Share to: share facebook share twitter share wa share telegram print page

 

KCBS pentagram

In quantum foundations, the KCBS pentagram was discovered by Alexander Klyachko, M. Ali Can, Sinem Binicioglu, and Alexander Shumovsky as an example disproving noncontextual hidden variable models.

Let's say we have a pentagram, which is a graph with 5 vertices and 5 edges. Each vertex can be colored either red or blue. An edge is said to match if both of its vertices have the same color. Otherwise, it's a mismatch. In a hidden variable model, the total number of mismatches over all of the edges has to be an even number due to cyclicity, i.e. 0, 2 or 4. So, with a probability mixture over hidden variable assignments, the expectation value of the sum of mismatches over all of the 5 edges has to lie between 0 and 4.

Then, someone hands you a huge number of KCBS pentagrams, but at first, all of the colorings are hidden. You're told you can only uncover 2 vertices at most, and only if they share a common edge. So, for each pentagram, you randomly pick an edge and uncover the colors on its vertices. This random choice is necessary because if the pentagram producers had been able to guess your choice for each pentagram in advance, he could have "conspired" to fool you. You find no matter which edge you choose, you find blue-blue with a probability of , red-blue with , and blue-red with . So, the expectation value of the sum of mismatches is .

How was it done? Each pentagram is a 3D quantum system with an orthonormal basis . Each pentagram is initialized to . Each vertex is assigned a 1D projector projecting to , n = 0, ..., 4 . Adjacent projectors commute. If we project, color the vertex red. Otherwise, color it blue.

See also


Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9