Share to: share facebook share twitter share wa share telegram print page

 

Information integration

Information integration (II) is the merging of information from heterogeneous sources with differing conceptual, contextual and typographical representations. It is used in data mining and consolidation of data from unstructured or semi-structured resources. Typically, information integration refers to textual representations of knowledge but is sometimes applied to rich-media content. Information fusion, which is a related term, involves the combination of information into a new set of information towards reducing redundancy and uncertainty.[1]

Examples of technologies available to integrate information include deduplication, and string metrics which allow the detection of similar text in different data sources by fuzzy matching. A host of methods for these research areas are available such as those presented in the International Society of Information Fusion. Other methods rely on causal estimates of the outcomes based on a model of the sources.[2]

See also

Books

  • M. E. Liggins; D. L. Hall; J. Llinas (2008). Theory and Practice (Multisensor Data Fusion) (Second ed.). CRC. ISBN 978-1-4200-5308-1.
  • D. L. Hall; S. A. H. McMullen (2004). Mathematical Techniques in Multisensor Data Fusion. ISBN 978-1-58053-335-5.
  • Springer, Information Fusion in Data Mining (2003), ISBN 3-540-00676-1
  • H. B. Mitchell, Multi-sensor Data Fusion – An Introduction (2007) Springer-Verlag, Berlin, ISBN 978-3-540-71463-7
  • S. Das, High-Level Data Fusion (2008), Artech House Publishers, Norwood, MA, ISBN 978-1-59693-281-4 and 1596932813
  • E. P. Blasch, E. Bosse, and D. A. Lambert, High-Level Information Fusion Management and System Design (2012), Artech House Publishers, Norwood, MA. ISBN 1608071510 | ISBN 978-1608071517
  • L. Snidaro; J. Garcia-Herrero; J. Llinas; et al. (2016). Context-Enhanced Information Fusion: Boosting Real-World Performance with Domain Knowledge. Springer-Verlag. ISBN 978-3319289694.

References

  1. ^ Haghighat, Mohammad; Abdel-Mottaleb, Mohamed; Alhalabi, Wadee (2016). "Discriminant Correlation Analysis: Real-Time Feature Level Fusion for Multimodal Biometric Recognition". IEEE Transactions on Information Forensics and Security. 11 (9): 1984–1996. doi:10.1109/TIFS.2016.2569061. S2CID 15624506.
  2. ^ P.K. Davis, D. Manheim, W.L. Perry, J. Hollywood (2015). In Proceedings of the 2015 Winter Simulation Conference (WSC '15). IEEE Press, Piscataway, NJ, USA, 2586-2597.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9