Share to: share facebook share twitter share wa share telegram print page

 

Hybrid Memory Cube

Hybrid Memory Cube (HMC) is a high-performance computer random-access memory (RAM) interface for through-silicon via (TSV)-based stacked DRAM memory. HMC competes with the incompatible rival interface High Bandwidth Memory (HBM).

Overview

Hybrid Memory Cube was co-developed by Samsung Electronics and Micron Technology in 2011,[1] and announced by Micron in September 2011.[2] It promised a 15 times speed improvement over DDR3.[3] The Hybrid Memory Cube Consortium (HMCC) is backed by several major technology companies including Samsung, Micron Technology, Open-Silicon, ARM, HP (since withdrawn), Microsoft (since withdrawn), Altera (acquired by Intel in late 2015), and Xilinx.[4][5] Micron, while continuing to support HMCC, is discontinuing the HMC product [6] in 2018 when it failed to achieve market adoption.

HMC combines through-silicon vias (TSV) and microbumps to connect multiple (currently 4 to 8) dies of memory cell arrays on top of each other.[7] The memory controller is integrated as a separate die.[2]

HMC uses standard DRAM cells but it has more data banks than classic DRAM memory of the same size. The HMC interface is incompatible with current DDRn (DDR2 or DDR3) and competing High Bandwidth Memory implementations.[8]

HMC technology won the Best New Technology award from The Linley Group (publisher of Microprocessor Report magazine) in 2011.[9][10]

The first public specification, HMC 1.0, was published in April 2013.[11] According to it, the HMC uses 16-lane or 8-lane (half size) full-duplex differential serial links, with each lane having 10, 12.5 or 15 Gbit/s SerDes.[12] Each HMC package is named a cube, and they can be chained in a network of up to 8 cubes with cube-to-cube links and some cubes using their links as pass-through links.[13] A typical cube package with 4 links has 896 BGA pins and a size of 31×31×3.8 millimeters.[14]

The typical raw bandwidth of a single 16-lane link with 10 Gbit/s signalling implies a total bandwidth of all 16 lanes of 40 GB/s (20 GB/s transmit and 20 GB/s receive); cubes with 4 and 8 links are planned, though the HMC 1.0 spec limits link speed to 10 Gbit/s in the 8-link case. Therefore, a 4-link cube can reach 240 GB/s memory bandwidth (120 GB/s each direction using 15 Gbit/s SerDes), while an 8-link cube can reach 320 GB/s bandwidth (160 GB/s each direction using 10 Gbit/s SerDes).[15] Effective memory bandwidth utilization varies from 33% to 50% for smallest packets of 32 bytes; and from 45% to 85% for 128 byte packets.[7]

As reported at the HotChips 23 conference in 2011, the first generation of HMC demonstration cubes with four 50 nm DRAM memory dies and one 90 nm logic die with total capacity of 512 MB and size 27×27 mm had power consumption of 11 W and was powered with 1.2 V.[7]

Engineering samples of second generation HMC memory chips were shipped in September 2013 by Micron.[3] Samples of 2 GB HMC (stack of 4 memory dies, each of 4 Gbit) are packed in a 31×31 mm package and have 4 HMC links. Other samples from 2013 have only two HMC links and a smaller package: 16×19.5 mm.[16]

The second version of the HMC specification was published on 18 November 2014 by HMCC.[17] HMC2 offers a variety of SerDes rates ranging from 12.5 Gbit/s to 30 Gbit/s, yielding an aggregate link bandwidth of 480 GB/s (240 GB/s each direction), though promising only a total DRAM bandwidth of 320 GB/sec.[18] A package may have either 2 or 4 links (down from the 4 or 8 in HMC1), and a quarter-width option is added using 4 lanes.

The first processor to use HMCs was the Fujitsu SPARC64 XIfx,[19] which is used in the Fujitsu PRIMEHPC FX100 supercomputer introduced in 2015.

JEDEC's Wide I/O and Wide I/O 2 are seen as the mobile computing counterparts to the desktop/server-oriented HMC in that both involve 3D die stacks.[20]

In August 2018, Micron announced a move away from HMC to pursue competing high-performance memory technologies such as GDDR6 and HBM.[21]

See also

References

  1. ^ Kada, Morihiro (2015). "Research and Development History of Three-Dimensional Integration Technology" (PDF). Three-Dimensional Integration of Semiconductors: Processing, Materials, and Applications. Springer. pp. 15–6. ISBN 9783319186757. Archived from the original (PDF) on 23 October 2021. Retrieved 19 July 2019.
  2. ^ a b Micron Reinvents DRAM Memory, Linley Group, Jag Bolaria, 12 September 2011
  3. ^ a b Mearian, Lucas (25 September 2013). "Micron ships Hybrid Memory Cube that boosts DRAM 15X". computerworld.com. Computerworld. Archived from the original on 11 October 2014. Retrieved 4 November 2014.
  4. ^ Microsoft backs Hybrid Memory Cube tech // by Gareth Halfacree, bit-tech, 9 May 2012
  5. ^ "About Us". Hybrid Memory Cube Consortium. Archived from the original on 10 October 2011. Retrieved 10 October 2011.
  6. ^ "FAQs". www.micron.com. Retrieved 5 December 2018.
  7. ^ a b c Hybrid Memory Cube (HMC), J. Thomas Pawlowski (Micron) // HotChips 23
  8. ^ Memory for Exascale and ... Micron's new memory component is called HMC: Hybrid Memory Cube Archived 17 April 2012 at the Wayback Machine by Dave Resnick (Sandia National Laboratories) // 2011 Workshop on Architectures I: Exascale and Beyond, 8 July 2011
  9. ^ Micron's Hybrid Memory Cubes win tech award // by Gareth Halfacree, bit-tech, 27 January 2012
  10. ^ Best Processor Technology of 2011 // The Linley Group, Tom Halfhill, 23 Jan 2012
  11. ^ Hybrid Memory Cube receives its finished spec, promises up to 320 GB per second By Jon Fingas // Engadget, 3 April 2013
  12. ^ HMC 1.0 Specification, Chapter "1 HMC Architecture"
  13. ^ HMC 1.0 Specification, Chapter "5 Chaining"
  14. ^ HMC 1.0 Specification, Chapter "19 Packages for HMC-15G-SR Devices"
  15. ^ "Hybrid Memory Cube Specification 1.0" (PDF). HMC Consortium. 1 January 2013. Archived from the original (PDF) on 13 May 2013. Retrieved 10 August 2016.
  16. ^ Hruska, Joel (25 September 2013). "Hybrid Memory Cube 160GB/sec RAM starts shipping: Is this the technology that finally kills DDR RAM?". Extremetech. Extreme Tech. Retrieved 27 September 2013.
  17. ^ Hybrid Memory Cube Consortium Advances Hybrid Memory Cube Performance and Industry Adoption With Release of New Specification Archived 1 August 2016 at the Wayback Machine, 18 November 2014
  18. ^ "Hybrid Memory Cube Specification 2.1" (PDF). HMC Consortium. 5 November 2015. Archived from the original (PDF) on 9 January 2016. Retrieved 10 August 2016.
  19. ^ Halfhill, Tom R. (22 September 2014). "Sparc64 XIfx Uses Memory Cubes". Microprocessor Report.
  20. ^ Goering, Richard (6 August 2013). "Wide I/O 2, Hybrid Memory Cube (HMC) – Memory Models Advance 3D-IC Standards". cadence.com. Cadence Design Systems. Retrieved 8 December 2014.
  21. ^ "Micron Announces Shift in High-Performance Memory Roadmap Strategy".
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9