Share to: share facebook share twitter share wa share telegram print page

 

Hodge–Arakelov theory

In mathematics, Hodge–Arakelov theory of elliptic curves is an analogue of classical and p-adic Hodge theory for elliptic curves carried out in the framework of Arakelov theory. It was introduced by Mochizuki (1999). It bears the name of two mathematicians, Suren Arakelov and W. V. D. Hodge. The main comparison in his theory remains unpublished as of 2019.

Mochizuki's main comparison theorem in Hodge–Arakelov theory states (roughly) that the space of polynomial functions of degree less than d on the universal extension of a smooth elliptic curve in characteristic 0 is naturally isomorphic (via restriction) to the d2-dimensional space of functions on the d-torsion points. It is called a 'comparison theorem' as it is an analogue for Arakelov theory of comparison theorems in cohomology relating de Rham cohomology to singular cohomology of complex varieties or étale cohomology of p-adic varieties.

In Mochizuki (1999) and Mochizuki (2002a) he pointed out that arithmetic Kodaira–Spencer map and Gauss–Manin connection may give some important hints for Vojta's conjecture, ABC conjecture and so on; in 2012, he published his Inter-universal Teichmuller theory, in which he didn't use Hodge-Arakelov theory but used the theory of frobenioids, anabelioids and mono-anabelian geometry.

See also

References

  • Mochizuki, Shinichi (1999), The Hodge-Arakelov theory of elliptic curves: global discretization of local Hodge theories (PDF), Preprint No. 1255/1256, Res. Inst. Math. Sci., Kyoto Univ., Kyoto
  • Mochizuki, Shinichi (2002a), "A survey of the Hodge-Arakelov theory of elliptic curves. I", in Fried, Michael D.; Ihara, Yasutaka (eds.), Arithmetic fundamental groups and noncommutative algebra (Berkeley, CA, 1999) (PDF), Proc. Sympos. Pure Math., vol. 70, Providence, R.I.: American Mathematical Society, pp. 533–569, ISBN 978-0-8218-2036-0, MR 1935421
  • Mochizuki, Shinichi (2002b), "A survey of the Hodge-Arakelov theory of elliptic curves. II", Algebraic geometry 2000, Azumino (Hotaka) (PDF), Adv. Stud. Pure Math., vol. 36, Tokyo: Math. Soc. Japan, pp. 81–114, ISBN 978-4-931469-20-4, MR 1971513
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9