Share to: share facebook share twitter share wa share telegram print page

 

Helmholtz minimum dissipation theorem

In fluid mechanics, Helmholtz minimum dissipation theorem (named after Hermann von Helmholtz who published it in 1868[1][2]) states that the steady Stokes flow motion of an incompressible fluid has the smallest rate of dissipation than any other incompressible motion with the same velocity on the boundary.[3][4] The theorem also has been studied by Diederik Korteweg in 1883[5] and by Lord Rayleigh in 1913.[6]

This theorem is, in fact, true for any fluid motion where the nonlinear term of the incompressible Navier-Stokes equations can be neglected or equivalently when , where is the vorticity vector. For example, the theorem also applies to unidirectional flows such as Couette flow and Hagen–Poiseuille flow, where nonlinear terms disappear automatically.

Mathematical proof

Let and be the velocity, pressure and strain rate tensor of the Stokes flow and and be the velocity, pressure and strain rate tensor of any other incompressible motion with on the boundary. Let and be the representation of velocity and strain tensor in index notation, where the index runs from one to three. Let be a bounded domain with boundary of class .[7]

Consider the following integral,

where in the above integral, only symmetrical part of the deformation tensor remains, because the contraction of symmetrical and antisymmetrical tensor is identically zero. Integration by parts gives

The first integral is zero because velocity at the boundaries of the two fields are equal. Now, for the second integral, since satisfies the Stokes flow equation, i.e., , we can write

Again doing an Integration by parts gives

The first integral is zero because velocities are equal and the second integral is zero because the flow is incompressible, i.e., . Therefore we have the identity which says,

The total rate of viscous dissipation energy over the whole volume of the field is given by

and after a rearrangement using above identity, we get

If is the total rate of viscous dissipation energy over the whole volume of the field , then we have

.

The second integral is non-negative and zero only if , thus proving the theorem ().

Poiseuille flow theorem

The Poiseuille flow theorem[8] is a consequence of the Helmholtz theorem states that The steady laminar flow of an incompressible viscous fluid down a straight pipe of arbitrary cross-section is characterized by the property that its energy dissipation is least among all laminar (or spatially periodic) flows down the pipe which have the same total flux.

References

  1. ^ Helmholtz, H. (1868). Verh. naturhist.-med. Ver. Wiss. Abh, 1, 223.
  2. ^ von Helmholtz, H. (1868). Zur Theorie der stationären Ströme in reibenden Flüssigkeiten. Verh. Naturh.-Med. Ver. Heidelb, 11, 223.
  3. ^ Lamb, H. (1932). Hydrodynamics. Cambridge university press.
  4. ^ Batchelor, G. K. (2000). An introduction to fluid dynamics. Cambridge university press.
  5. ^ Korteweg, D. J. (1883). XVII. On a general theorem of the stability of the motion of a viscous fluid. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 16(98), 112-118.
  6. ^ Rayleigh, L. (1913). LXV. On the motion of a viscous fluid. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 26(154), 776-786.
  7. ^ Kohr, Mirela; Pop, Ioan (2004). Viscous incompressible flow for low Reynolds numbers. Advances in boundary elements series. Southampton ; Boston: WIT. p. 11. ISBN 978-1-85312-991-9. OCLC 51993205.
  8. ^ Serrin, J. (1959). Mathematical principles of classical fluid mechanics. In Fluid Dynamics I/Strömungsmechanik I (pp. 125-263). Springer, Berlin, Heidelberg.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9