Share to: share facebook share twitter share wa share telegram print page

 

Halorhodopsin

Halorhodopsin
Halorhodopsin Cartoon Visualization by Jawahar Swaminathan and MSD staff at the European Bioinformatics Institute
Identifiers
SymbolBac_rhodopsin
InterProCD15243
SCOP28071317 / SCOPe / SUPFAM
TCDB3.E.1.2.2
OPM superfamily6
OPM protein76


Halorhodopsin is a seven-transmembrane retinylidene protein from microbial rhodopsin family. It is a chloride-specific light-activated ion pump found in archaea known as halobacteria. It is activated by green light wavelengths of approximately 578 nm.[1] Halorhodopsin also shares sequence similarity to channelrhodopsin, a light-gated ion channel.

Halorhodopsin contains the essential light-isomerizable vitamin A derivative all-trans-retinal. Due to the dedication towards discovering the structure and function of this moleculc, halorhodopsin is one of the few membrane proteins whose crystal structure is known. Halorhodopsin uses the energy of green/yellow light to move chloride ions into the cell, overcoming the membrane potential. Beside chlorides it transports other halides and nitrates into the cell. Potassium chloride uptake by cells helps to maintain osmotic balance during cell growth. By performing the same task, light-driven anion pumps can considerably reduce the use of metabolic energy. Halorhodopsin has been the subject of much study and its structure is accurately known. Its properties are similar to those of bacteriorhodopsin, and these two light-driven ion pumps transport cations and anions in opposite directions.

Halorhodopsin isoforms can be found in multiple species of halobacteria, including Halobacterium salinarum, and Natronobacterium pharaonis. Much ongoing research is exploring these differences, and using them to parse apart the photocycle and pump properties. After bacteriorhodopsin, halorhodopsin may be the best type I (microbial) opsin studied. Peak absorbance of the halorhodopsin retinal complex is about 570 nm.

Just as the blue-light activated ion channel channelrhodopsin-2 opens up the ability to activate excitable cells (such as neurons, muscle cells, pancreatic cells, and immune cells) with brief pulses of blue light, halorhodopsin opens up the ability to silence excitable cells with brief pulses of yellow light. Thus halorhodopsin and channelrhodopsin together enable multiple-color optical activation, silencing, and desynchronization of neural activity, creating a powerful neuroengineering toolbox.[2][3]

Halorhodopsin from Natronomonas (NpHR) has been used to achieve inhibition of action potentials in neurons in mammalian systems. Since light activation of NpHR leads to an influx of chloride ions which is a part of the natural process for generating hyperpolarization, NpHR induced inhibition works very well in neurons. Original NpHR channels when expressed in mammalian cells, showed a tendency to get accumulated in the endoplasmic reticulum of the cells.[4] To overcome the sub-cellular localization issues, an ER export motif was added to the NpHR sequence. This modified NpHR (called eNpHR2.0) was utilized successfully to drive aggregate-free, high level expression of NpHR in vivo.[5] However, even the modified form of NpHR showed poor localization at the cell membrane. To achieve higher membrane-localization it was further modified by addition of a golgi export signal and membrane trafficking signal from a potassium channel (Kir2.1). The addition of Kir2.1 signal significantly improved the membrane localization of NpHR and this engineered form of NpHR was labeled eNpHR3.0.[6]

History

Halorhodopsin was discovered in 1980 in Halobacterium salinarum, a salt-loving (halophilic) type of archaeon.[7]  

Etymology

The name Halorhodopsin is of Greek origin, the halo- prefix emerging from ἅλς (háls) meaning "salt" or "sea".[8] The suffix -rhodopsin originates from ῥόδον (rhódon, “rose”), due to its pinkish color, and ὄψις (ópsis, “sight”).[9]

Structure

Halorhodopsin folds into a seven-transmembrane helix topology and has a similar tertiary structure (but not primary sequence structure) to vertebrate rhodopsins, the pigments that sense light in the retina.[10]

Applications

Halorhodopsin has been used in optogenetics to hyperpolarize (inhibit) specific neurons. Optogenetics has been proposed as therapeutic approach to neurological conditions for which current treatment methods are not always effective, including epilepsy and Parkinson's disease.[11] NpHR has been used to inhibit excitatory neurons in the subthalamic nucleus of hemiparkinsonian rats, lesioned using the neurotoxin 6-OHDA.[11]

References

  1. ^ "Halorhodopsin". Max Planck Institute of Biochemistry. 8 April 2023.
  2. ^ Zhang F, Wang L, Brauner M, Liewald J, Kay K, Watzke N, Wood P, Bamberg E, Nagel G, Gottschalk A, Deisseroth K (April 2007). "Multimodal fast optical interrogation of neural circuitry". Nature. 446 (7136): 633–639. doi:10.1038/nature05744. PMID 17410168. S2CID 4415339.
  3. ^ Han X, Boyden ES (March 2007). "Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution". PLOS ONE. 2 (3): e299. doi:10.1371/journal.pone.0000299. PMC 1808431. PMID 17375185.
  4. ^ Gradinaru V, Thompson KR, Deisseroth K (August 2008). "eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications". Brain Cell Biology. 36 (1–4): 129–39. doi:10.1007/s11068-008-9027-6. PMC 2588488. PMID 18677566.
  5. ^ Gradinaru, Viviana; Mogri, M.; Thompson, K.R.; Henderson, J.M.; Deisseroth, K (2009). "Optical deconstruction of parkinsonian neural circuitry". Science. 324 (5925): 354–359. CiteSeerX 10.1.1.368.668. doi:10.1126/science.1167093. PMC 6744370. PMID 19299587.
  6. ^ Gradinaru, Viviana; Feng Zhang; Charu Ramakrishnan; Joanna Mattis; Rohit Prakash; Ilka Diester; Inbal Goshen; Kimberly R. Thompson; Karl Deisseroth (2010). "Molecular and Cellular Approaches for Diversifying and Extending Optogenetics". Cell. 141 (1): 154–165. doi:10.1016/j.cell.2010.02.037. PMC 4160532. PMID 20303157.
  7. ^ Matsuno-Yagi, Akemi; Mukohata, Yasuo (1980-01-01). "ATP synthesis linked to light-dependent proton uptake in a red mutant strain of Halobacterium lacking bacteriorhodopsin". Archives of Biochemistry and Biophysics. 199 (1): 297–303. doi:10.1016/0003-9861(80)90284-2. ISSN 0003-9861.
  8. ^ "halo-", Wiktionary, 2023-03-17, retrieved 2023-04-08
  9. ^ "rhodopsin", Wiktionary, 2023-03-05, retrieved 2023-04-08
  10. ^ "Halorhodopsin". Max Planck Institute of Biochemistry. 8 April 2023.
  11. ^ a b Ji, Zhi-Gang; Ishizuka, Toru; Yawo, Hiromu (2013-01-01). "Channelrhodopsins—Their potential in gene therapy for neurological disorders". Neuroscience Research. Photo-transduction proteins and their optogenetic applications in neuroscience. 75 (1): 6–12. doi:10.1016/j.neures.2012.09.004. ISSN 0168-0102.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9